Skip to main content
Log in

Effect of Co-overexpression of Nisin Key Genes on Nisin Production Improvement in Lactococcus lactis LS01

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Nisin is a small antimicrobial peptide produced by several subset strains of Lactococcus lactis. To improve nisin yield in the producer L. lactis LS01, we proposed a successive fusion of nisA with nisRK and nisFEG into a single shuttle expression vector pMG36e under the control of the native strong constitutive promoter p32. Subsequently, the recombinant vectors were transplanted into the producer cell through electroporation. Nisin productivity was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis and bioactivity assays. Expression of nisin peptide was detected by agar diffusion bioassay, and the transcriptional levels of the target genes involved in nisin biosynthesis were investigated via semi-quantitative reverse transcription PCR expression analysis using 16S ribosomal RNA (rRNA) as an internal control. Results suggested that the introduction of empty plasmid did not affect nisin production of L. lactis LS01, whereas by our rational construction and screening, the engineered strain co-overexpressing nisA, nisRK, and nisFEG achieved a maximum increment in bioactive nisin production with a yield of 2470 IU/ml in shake flasks and 4857 IU/ml in 1.0-l fermenters, which increased by approximately 66.3 and 52.6% (P < 0.05), respectively, compared with that of the original strain under the given fermentation conditions. Meanwhile, the transcriptional analysis revealed that the expression of most of these multicopy genes except nisE at transcriptional level were upregulated in the two recombinant strains (LS01/pAR and LS01/pARF), possibly contributing to the improved nisin production. Therefore, this study would provide a potential strategy to improve the economic benefits of nisin manufacture for large-scale industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheigh CI, Pyun YR (2005) Nisin biosynthesis and its properties. Biotechnol Lett 27(21):1641–1648

    Article  CAS  Google Scholar 

  2. Hurst A (1981) Nisin. Adv Appl Microbiol 27:85–123

    Article  CAS  Google Scholar 

  3. Hampikyan H (2009) Efficacy of nisin against Staphylococcus aureus in experimentally contaminated sucuk, a Turkish-type fermented sausage. J Food Prot 72:1739–1743

    Article  CAS  Google Scholar 

  4. Periago PM, Moezelaar R (2001) Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int J Food Microbiol 68(1):141–148

    Article  CAS  Google Scholar 

  5. Severina E, Severin A, Tomasz A (1998) Antibacterial efficacy of nisin against multidrug-resistant gram-positive pathogens. J Antimicrob Chemother 41:341–347. doi:10.1093/jac/41.3.341

    Article  CAS  Google Scholar 

  6. Delves-Broughton J, Blackburn P, Evans R, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69(2):193–202. doi:10.1007/BF00399424

    Article  CAS  Google Scholar 

  7. Food and Drug Administration (1988) Nisin preparation: affirmation of GRAS status as direct human food ingredient. Fed Regist 53(66):11247–11313

    Google Scholar 

  8. De Kwaadsteniet M, Doeschate KT, Dicks LMT (2009) Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett Appl Microbiol 48(1):65–70. doi:10.1111/j.1472-765X.2008.02488.x

    Article  CAS  Google Scholar 

  9. Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30(7):505–515

    Article  CAS  Google Scholar 

  10. Sheldon BW, Schuman JD (1998) Thermal and biological treatments to control psychrotrophic pathogens. Poult Sci 75:1126–1132

    Article  Google Scholar 

  11. Tong Z, Ni L, Ling J (2014) Antibacterial peptide nisin: a potential role in the inhibition of oral pathogenic bacteria. Peptides 60:32–40

    Article  CAS  Google Scholar 

  12. Aranha C, Gupta S, Reddy KVR (2004) Contraceptive efficacy of antimicrobial peptide nisin: in vitro and in vivo studies. Contraception 69(4):333–338

    Article  CAS  Google Scholar 

  13. Kuipers OP, Beerthuyzen MM, de Ruyter PGGA, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304. doi:10.1074/jbc.270.45.27299

    Article  CAS  Google Scholar 

  14. Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596

    Article  CAS  Google Scholar 

  15. Siegers K, Heinzmann S, Entian KD (1996) Biosynthesis of lantibiotic nisin. Post-translational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex. J Biol Chem 271:12294–12301. doi:10.1074/jbc.271.21.12294

    Article  CAS  Google Scholar 

  16. Cheigh CI, Park H, Choi HJ, Pyun YR (2005) Enhanced nisin production by increasing genes involved in nisin Z biosynthesis in Lactococcus lactis subsp. lactis A164. Biotechnol Lett 27:155–160. doi:10.1007/s10529-004-7661-3

    Article  CAS  Google Scholar 

  17. De Ruyter PG, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter I, De Vos WM (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178(12):3434–3439. doi:10.1128/jb.178.12.3434-3439.1996

    Article  CAS  Google Scholar 

  18. Kleerebezem M, Quadri LEN, Kuipers OP, de Vos WM (1997) Quorum-sensing by peptide pheromones and two-component signal-transduction systems in gram positive bacteria. Mol Microbiol 24:895–904. doi:10.1046/j.1365-2958.1997.4251782.x

    Article  CAS  Google Scholar 

  19. Kleerebezem M, De Vos WM, Kuipers OP (1998) The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In: Dunny GM, Winams SC (eds) Cell–cell signalling in bacteria. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  20. Ra R, Qiao M, Immonen T, Pujana I, Saris PEJ (1996) Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactococcus lactis N8. Microbiology 142:1282–1288. doi:10.1099/13500872-142-5-1281

    Article  Google Scholar 

  21. Lubelski J, Rink R, Khusainov R, Moll G, Kuipers O (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65(3):455–476. doi:10.1007/s00018-007-7171-2

    Article  CAS  Google Scholar 

  22. Kim WS, Hall RJ, Dunn NW (1998) Improving nisin production by increasing nisin immunity/resistance genes in the producer organism Lactococcus lactis. Appl Microbiol Biotechnol 50:429–433. doi:10.1007/s002530051316

    Article  CAS  Google Scholar 

  23. Kong W, Lu T (2014) Cloning and optimization of a nisin biosynthesis pathway for bacteriocin harvest. ACS Synth Biol 3:439–445. doi:10.1021/sb500225r

    Article  CAS  Google Scholar 

  24. Haina Li (2011) Screening of high yield nisin-producing strains and optimization of its fermentation conditions. Dissertation. Shandong University

  25. O'sullivan DJ, Klaenhammer TR (1993) Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59(8):2730–2733

    Google Scholar 

  26. Gerber SD, Solioz M (2007) Efficient transformation of Lactococcus lactis IL1403 and generation of knock-out mutants by homologous recombination. J Basic Microbiol 47(3):281–286. doi:10.1002/jobm.200610297

    Article  CAS  Google Scholar 

  27. Papagianni M, Avramidis N, Filioussis G (2007) High efficiency electro-transformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol. BMC Biotechnol 7(1):1. doi:10.1186/1472-6750-7-15

    Article  Google Scholar 

  28. Daba H, Pandian S, Gosselin JF, Simard RE, Huang J, Lacroix C (1991) Detection and activity of a bacteriocin by Leuconostoc mesenteroides. Appl Environ Microbiol 57:3450–3455

    CAS  Google Scholar 

  29. Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G (2001) Semi-quantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 3(1):19–25

    Article  CAS  Google Scholar 

  30. Yadav P, Mukesh M, Kataria RS, Yadav A, Mohanty AK (2012) Semi-quantitative RT-PCR analysis of fat metabolism genes in mammary tissue of lactating and non-lactating water buffalo (Bubalus bubalis). Trop Anim Health Prod 44(4):693–696. doi:10.1007/s11250-011-9988-9

    Article  Google Scholar 

  31. Cheigh CI, Choi HJ, Park H, Kim SB, Kook MC, Kim TS, Hwang JK, Pyun YR (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J Biotechnol 95:225–235

    Article  CAS  Google Scholar 

  32. De Vuyst L, Vandamme EJ (1992) Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. Microbiology 138(3):571–578

    CAS  Google Scholar 

  33. Zamfir M, Callewaert R, Cornea PC, De Vuyst L (2000) Production kinetics of acidophilin 801, a bacteriocin produced by Lactobacillus acidophilus IBB801. FEMS Microbiol Lett 190:305–308

    Article  CAS  Google Scholar 

  34. Kim WS, Hall RJ, Dunn NW (1997) The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl Microbiol Biotechnol 48(4):449–453

    Article  CAS  Google Scholar 

  35. Tafreshi SH, Mirdamadi S, Norouzian D et al (2010) Effect of non-nutritional factors on nisin production. Afr J Biotechnol 9(9):1382–1391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shandong Province High-tech Industry Major Projects (No. 2015ZDJS04002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qiang Zhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, ZJ., Zhang, Xy., Liu, F. et al. Effect of Co-overexpression of Nisin Key Genes on Nisin Production Improvement in Lactococcus lactis LS01. Probiotics & Antimicro. Prot. 9, 204–212 (2017). https://doi.org/10.1007/s12602-017-9268-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9268-8

Keywords

Navigation