Skip to main content
Log in

Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In recent years, the widespread use of antibiotics has caused many bacterial pathogens resistance to conventional antibiotics. Therefore, generation of new antibiotics to control and reduce the effects of these pathogens is urgently needed. Antimicrobial peptides and proteins are important members of the host defense system in eukaryotes. These peptides are potent, broad-spectrum antibiotics that demonstrate potential as novel and alternative therapeutic agents for the treatment of drug-resistant infections. Accordingly, we evaluated two hybrid peptides CM11 (WKLFKKILKVL-NH2) and CM15 (KWKLFKKIGAVLKVL-NH2) on five important pathogenic bacteria. These peptides are short cecropin–melittin hybrid peptides obtained through a sequence combination approach, which are highly effective to inhibit the growth of important pathogenic bacteria. The activity of these two cationic peptides (CM11 and CM15) in different concentrations (2–64 mg/L) was investigated against standard and clinical isolates of important hospital infection bacteria by measuring MIC, MBC, and bactericidal assay. These peptides demonstrated the same ranges of inhibitory values: The organisms in early 24 h were more susceptible to polycationic peptides (MIC: 8 mg/L and MBC 32 mg/L), but after 48 h the MIC and MBC remained constant for the CM11 peptide. Bactericidal assay showed that all bacteria strains did not have any growth in agar plates after 40 min. The result showed that these two peptides are more effective than other peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brogden KA, Ackermann M, McCray PB Jr, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22(5):465–478

    Article  CAS  Google Scholar 

  2. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  CAS  Google Scholar 

  3. Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6(10):497–511

    Article  CAS  Google Scholar 

  4. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  Google Scholar 

  5. Wang J, Wong ES, Whitley JC, Li J, Stringer JM, Short KR, Renfree MB, Belov K, Cocks BG (2011) Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS ONE 6(8):e24030

    Article  CAS  Google Scholar 

  6. Hancock RE, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2(1):79–83

    Article  CAS  Google Scholar 

  7. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    Article  CAS  Google Scholar 

  8. Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30(7):505–515

    Article  CAS  Google Scholar 

  9. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215

    Article  CAS  Google Scholar 

  10. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511

    Article  CAS  Google Scholar 

  11. Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270(1):1–11

    Article  CAS  Google Scholar 

  12. Zhang L, Falla TJ (2006) Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 7(6):653–663

    Article  CAS  Google Scholar 

  13. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  Google Scholar 

  14. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  CAS  Google Scholar 

  15. Ferre R, Melo MN, Correia AD, Feliu L, Bardaji E, Planas M, Castanho M (2009) Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100. Biophys J 96(5):1815–1827

    Article  CAS  Google Scholar 

  16. Gentilucci L, Tolomelli A, Squassabia F (2006) Peptides and peptidomimetics in medicine, surgery and biotechnology. Curr Med Chem 13(20):2449–2466

    Article  CAS  Google Scholar 

  17. Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11:105–128

    Article  CAS  Google Scholar 

  18. Boman HG, Faye I, Gudmundsson GH, Lee JY, Lidholm DA (1991) Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur J Biochem 201(1):23–31

    Article  CAS  Google Scholar 

  19. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84(15):5449–5453

    Article  CAS  Google Scholar 

  20. Dempsey CE (1990) The actions of melittin on membranes. Biochim Biophys Acta 1031(2):143–161

    CAS  Google Scholar 

  21. Steiner H (1982) Secondary structure of the cecropins: antibacterial peptides from the moth H. cecropia. FEBS Lett 137(2):283–287

    Article  CAS  Google Scholar 

  22. Moore AJ, Beazley WD, Bibby MC, Devine DA (1996) Antimicrobial activity of cecropins. J Antimicrob Chemother 37(6):1077–1089

    Article  CAS  Google Scholar 

  23. Tamang DG, Saier MH Jr (2006) The cecropin superfamily of toxic peptides. J Mol Microbiol Biotechnol 11(1–2):94–103

    Article  CAS  Google Scholar 

  24. Andreu D, Ubach J, Boman A, Wahlin B, Wade D, Merrifield RB, Boman HG (1992) Shortened cecropin. A-melittin hybrids significant size reduction retains potent antibiotic activity. FEBS Lett 296(2):190–194

    Article  CAS  Google Scholar 

  25. Wade D, Andreu D, Mitchell SA, Silveira AM, Boman A, Boman HG, Merrifield RB (1992) Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40(5):429–436

    Article  CAS  Google Scholar 

  26. Saugar JM, Rodriguez-Hernandez MJ, de la Torre BG, Pachon-Ibanez ME, Fernandez-Reyes M, Andreu D, Pachon J, Rivas L (2006) Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of A. baumannii: molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother 50(4):1251–1256

    Article  CAS  Google Scholar 

  27. Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85(14):5072–5076

    Article  CAS  Google Scholar 

  28. David SA (2001) Towards a rational development of anti-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J Mol Recognit 14:370–387

    Article  CAS  Google Scholar 

  29. Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Simona Del Prete M, Lukasiak J, Scalise G (2004) In vitro activity and killing effect of the synthetic hybrid cecropin A-melittin peptide CA(1–7)M(2–9)NH(2) on methicillin-resistant nosocomial isolates of S. aureus and interactions with clinically used antibiotics. Diagn Microbiol Infect Dis 49(3):197–200

    Article  CAS  Google Scholar 

  30. Jarvis WR (2003) Epidemiology and control of P. aeruginosa infections in the intensive care unit. In: Hauser AR, Rello J (eds) Severe infections caused by P. aeruginosa. Kluwer Academic, Boston

    Google Scholar 

  31. Cisneros JM, Rodriguez-Bano J (2002) Nosocomial bacteremia due to A. baumannii : epidemiology, clinical features and treatment. Clin Microbiol Infect 8(11):687–693

    Article  CAS  Google Scholar 

  32. Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 27(5):887–892

    Article  CAS  Google Scholar 

  33. Navon-Venezia S, Ben-Ami R, Carmeli Y (2005) Update on P. aeruginosa and A. baumannii infections in the healthcare setting. Curr Opin Infect Dis 18(4):306–313

    Article  Google Scholar 

  34. Van Looveren M, Goossens H (2004) Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect 10(8):684–704

    Article  Google Scholar 

  35. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE MJR, Talan DA, Chambers HF (2011) Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant S. aureus infections in adults and children: executive summary. Clin Infect Dis 52(3):285–292

    Article  Google Scholar 

  36. Bean DC, Krahe D, Wareham DW (2008) Antimicrobial resistance incommunity and nosocomial E. coli urinary tract isolates, London 2005–2006. Ann Clin Microbiol Antimicrob 7:13

    Article  Google Scholar 

  37. Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholera. J Med Microbiol 60(4):397–407

    Article  Google Scholar 

  38. Badosa E, Ferre R, Planas M, Feliu L, Besalu E, Cabrefiga J, Bardaji E, Montesinos E (2007) A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 28(12):2276–2285

    Article  CAS  Google Scholar 

  39. National Committee for Clinical Laboratory Standards (2010) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard M7-A6. Villanova, PA

  40. Bechinger B (2004) Structure and function of membrane-lytic peptides. Crit Rev Plant Sci 23:271–292

    Article  CAS  Google Scholar 

  41. Vogel H, Jahnig F (1986) The structure of melittin in membranes. Biophys J 50(4):573–582

    Article  CAS  Google Scholar 

  42. Piers KL, Brown MH, Hancock RE (1994) Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 38(10):2311–2316

    CAS  Google Scholar 

  43. Sawyer JG, Martin NL, Hancock RE (1988) Interaction of macrophage cationic proteins with the outer membrane of P. aeruginosa. Infect Immun 56(3):693–698

    CAS  Google Scholar 

  44. Rodriguez-Hernandez MJ, Saugar J, Docobo-Perez F, de la Torre BG, Pachon-Ibanez ME, Garcia-Curiel A, Fernandez-Cuenca F, Andreu D, Rivas L, Pachon J (2006) Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of A. baumannii. J Antimicrob Chemother 58(1):95–100

    Article  CAS  Google Scholar 

  45. Ferre R, Badosa E, Feliu L, Planas M, Montesinos E, Bardaji E (2006) Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Appl Environ Microbiol 72(5):3302–3308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank from clinical microbiology laboratory of Baqiyatallah, Khatam al anbia and Shahid motahari hospitals for preparing bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Moosazadeh Moghaddam or J. Amani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghaddam, M.M., Abolhassani, F., Babavalian, H. et al. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli . Probiotics & Antimicro. Prot. 4, 133–139 (2012). https://doi.org/10.1007/s12602-012-9098-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-012-9098-7

Keywords

Navigation