Skip to main content

Advertisement

Log in

Antiviral Action of Methylated β-Lactoglobulin on the Human Influenza Virus A Subtype H3N2

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Antiviral activity of methylated β-lactoglobulin (Met-BLG) against H3N2 infected into MDCK cell lines depended on concentration of Met-BLG, viral load, and duration of infection. IC50% of the hemagglutination activity for 1 and 0.2 MOI (multiplicity of infection) after 24 h of incubation at 37 °C in the presence of 5% CO2 were 20 ± 0.8 and 17 ± 0.7 μg mL−1 Met-BLG, respectively. Longer incubation period (4 days) was associated with low IC50% of the hemagglutination activity (7.1 ± 0.3 μg mL−1 Met-BLG) and low IC50% of immuno-fluorescence of viral nucleoproteins (9.7 ± 0.4 μg mL−1 Met-BLG) when using 0.2 and 0.1 MOI, respectively. A concentration of 25 μg mL−1 of Met-BLG reduced the amount of replicating virus by about 2 and 1.3 logs when the viral load was 0.01 and 0.1 MOI, respectively, while higher concentrations reduced it by about 5–6 logs. Antiviral action of Met-BLG was coupled with a cellular protective action, which reached 100% when using 0.01 and 0.1 MOI and 83% when using 1.0 MOI. The time of Met-BLG addition after the viral infection was determinant for its antiviral efficacy and for its protection of the infected MDCK cell lines. Anti-hemagglutination action and cell protective action decreased gradually and in parallel with the delay in the time of Met-BLG addition to disappear totally after 10 h delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aoki FY, Boivin G, Roberts N (2007) Influenza virus susceptibility and resistance to oseltamivir. Antivir Ther 12:603–616

    CAS  Google Scholar 

  2. Barr IG, Hurt AC, Deed N, Iannello P, Tomasov C, Komadina N (2007) The emergence of adamantane resistance in influenza A (H1) viruses in Australia and regionally in 2006. Antivir Res 75:173–176

    Article  CAS  Google Scholar 

  3. Baz M, Abed Y, McDonald J, Boivin G (2006) Characterization of multidrug-resistant influenza A/H3N2 viruses shed during 1 year by an immunocompromised child. Clin Infect Dis 43:1555–1561

    Article  CAS  Google Scholar 

  4. Bertrand-Harb C, Chobert J-M, Dufour E, Haertlé T (1991) Esterification of food proteins: characterization of the derivatives by a colorimetric method and by electrophoresis. Sci Aliments 11:641–652

    CAS  Google Scholar 

  5. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dilen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    CAS  Google Scholar 

  6. Boulo S, Akarsu H, Ruigrok RW, Baudin F (2007) Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res 124:12–21

    Article  CAS  Google Scholar 

  7. Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, Povinelli L, Cox NJ, Klimov AI (2005) Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause of concern. Lancet 366:1175–1181

    Article  CAS  Google Scholar 

  8. Bright RA, Shay DK, Shu B, Cox NJ, Klimov AI (2006) Adamantane resistance among influenza A viruses isolated during the 2005–2006 influenza season in the United States. JAMA 295:891–894

    Article  CAS  Google Scholar 

  9. Cohen-Daniel L, Zakay-Rones Z, Resnick IB, Shapira MY, Dorozhko M, Mador N, Greenbaum E, Wolf DG (2009) Emergence of oseltamivir-resistant influenza A/H3N2 virus with altered hemagglutination pattern in a hematopoietic stem cell transplant recipient. J Clin Virol 44:138–140

    Article  CAS  Google Scholar 

  10. de Clerq E (2006) Antiviral agents active against influenza A viruses. Nat Rev Drug Discov 5:1015–1025

    Article  CAS  Google Scholar 

  11. Donald HB, Isaacs A (1954) Counts of influenza virus particles. J Gen Microbiol 10:457–464

    CAS  Google Scholar 

  12. Glaser L, Stevens J, Zamarin D, Wilson IA, García-Sastre A, Tumpey TM, Basler CF, Taubenberger JK, Palese P (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 79:11533–11536

    Article  CAS  Google Scholar 

  13. Gubareva LV, Robinson MJ, Bethell RC, Webster RG (1997) Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino-Neu5Ac2en. J Virol 71:3385–3390

    CAS  Google Scholar 

  14. Halpin MI, Richardson T (1985) Selected functionality changes of β-lactoglobulin upon esterification of side-chain carboxyl groups. J Dairy Sci 68:3189–3198

    Article  CAS  Google Scholar 

  15. Horimoto T, Kawaoka Y (2005) Influenza: lessons from past pandemics, warning from current incidents. Nat Rev Microbiol 3:591–600

    Article  CAS  Google Scholar 

  16. Huang T-S, Palese P, Krystal M (1990) Determination of influenza virus proteins required for genomic replication. J Virol 64:5669–5673

    CAS  Google Scholar 

  17. Ison MG, Gubareva LV, Atmar RL, Treanor J, Hayden FG (2006) Recovery of drug-resistant influenza virus from immunocompromised patients: a case series. J Infect Dis 193:760–764

    Article  CAS  Google Scholar 

  18. Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, Kimura K, Hayden FG, Sugaya N, Kawaoka Y (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364:759–765

    Article  CAS  Google Scholar 

  19. Leyssen P, de Clercq E, Neyts J (2008) Molecular strategies to inhibit the replication of RNA viruses. Antivir Res 78:9–25

    Article  CAS  Google Scholar 

  20. Mailliart P, Ribadeau Dumas B (1988) Preparation of β-lactoglobulin and α-lactoglobulin-free proteins from whey retentate by sodium chloride salting out at low pH. J Food Sci 53:743–752

    Article  CAS  Google Scholar 

  21. Morris SJ, Nightingale K, Smith H, Sweet C (2005) Influenza A virus induced apoptosis is a multifactorial process: exploiting reverse genetics to elucidate the role of influenza A virus proteins in virus induced apoptosis. Virology 335:198–211

    Article  CAS  Google Scholar 

  22. Murayama R, Harada Y, Shibata T, Kuroda K, Hayakawa S, Shimizu K, Tanaka T (2007) Influenza A virus non-structural protein 1 (NS1) interacts with cellular multifunctional nucleolin during infection. Biochem Biophys Res Commun 362:880–885

    Article  CAS  Google Scholar 

  23. Nichols WG, Guthrie KA, Corey L, Boeckh M (2004) Influenza infections after hematopoietic stem cell transplantation: risk factors, mortality, and the effect of antiviral therapy. Clin Infect Dis 39:1300–1306

    Article  Google Scholar 

  24. Oliveira JCR, Montes de Oca H, Duarte MM, Diniz CR, Fortes-Dias CL (2002) Toxicity of South American snake venoms measured by an in vitro cell culture assay. Toxicon 40:321–325

    Article  CAS  Google Scholar 

  25. Poole E, Elton D, Medcalf L, Digard P (2004) Functional domains of influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology 321:120–133

    Article  CAS  Google Scholar 

  26. Rachakonda PS, Veit M, Korte T, Ludwig K, Bottcher C, Huang Q, Schmidt MFG, Herrmann A (2007) The relevance for the stability of the influenza virus hemagglutinin. FASEB J 21:995–1002

    Article  CAS  Google Scholar 

  27. Seidel W, Künkel F, Geisler B, Garten W, Herrmann B, Döhner L, Klenk HD (1991) Intra epidemic variants of influenza virus H3 hemagglutinin differing in the number of carbohydrate side chains. Arch Virol 120:289–296

    Article  CAS  Google Scholar 

  28. Sitohy M, Billaudel S, Haertlé T, Chobert J-M (2007) Antiviral activity of esterified α-lactalbumin and β-lactoglobulin against herpes simplex virus type 1. Comparison with the effect of acyclovir and l-polylysines. J Agric Food Chem 55:10214–10220

    Article  CAS  Google Scholar 

  29. Sitohy M, Chobert J-M, Dalgalarrondo M, Nowoczin M, Besse B, Billaudel S, Haertlé T (2008) The effect of bovine whey proteins on the ability of Poliovirus and Coxsackie virus to infect Vero cells cultures. Int Dairy J 18:658–668

    Article  CAS  Google Scholar 

  30. Sitohy M, Chobert J-M, Haertlé T (2001) Simplified short-time method for the esterification of milk proteins. Milchwissenschaft 56:127–131

    CAS  Google Scholar 

  31. Sitohy M, Chobert J-M, Haertlé T (2005) Esterified whey proteins can protect Lactococcus lactis against bacteriophage infection. Comparison with the effect of native basic proteins and l-polylysines. J Agric Food Chem 53:3727–3734

    Article  CAS  Google Scholar 

  32. Sitohy M, Chobert J-M, Karwowska U, Gozdzicka-Jozefiak A, Haertlé T (2006) Inhibition of bacteriophage M13 replication with esterified milk proteins. J Agric Food Chem 54:3800–3806

    Article  CAS  Google Scholar 

  33. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Daum Lohman K, LT Suaez DL (2002) Development of a real-time reverse transcriptase PCR assay for Type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40:3256–3260

    Article  CAS  Google Scholar 

  34. Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, Wilson IA (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355:1143–1155

    Article  CAS  Google Scholar 

  35. Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410

    Article  CAS  Google Scholar 

  36. Sun L, Zhang G, Shu Y, Chen X, Zhu Y, Yang L, Ma G, Kitamura Y, Liu W (2009) Genetic correlation between H3N2 human and swine influenza viruses. J Clin Virol 44:141–144

    Article  CAS  Google Scholar 

  37. Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15:211–218

    Article  CAS  Google Scholar 

  38. Vigerust DJ, Ulett KB, Boyd KL, Madsen J, Hawgood S, McCullers JA (2007) N-Linked glycosylation attenuates H3N2 influenza viruses. J Virol 81:8593–8600

    Article  CAS  Google Scholar 

  39. Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody binding sites of Hong Kong influenza hemagglutinin and their involvement in antigenic variation. Nature 289:373–378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MS would like to thank for funding from ‘Imhotep’ Programme Hubert Curien and from Mission des Relations Internationales of INRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Chobert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitohy, M., Besse, B., Billaudel, S. et al. Antiviral Action of Methylated β-Lactoglobulin on the Human Influenza Virus A Subtype H3N2. Probiotics & Antimicro. Prot. 2, 104–111 (2010). https://doi.org/10.1007/s12602-010-9036-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-010-9036-5

Keywords

Navigation