Skip to main content
Log in

Probiotic-Induced Priming of Innate Immunity to Protect Against Rotaviral Infection

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Understanding of probiotic-induced regulatory gene expression and networking is critical to further explore their roles in controlling infection. Transcriptional profile of selected innate immune genes in primary bovine intestinal epithelial cells was assessed over a time course of incubation with the probiotic Lactobacillus plantarum 299v. Based on gene expression results, a time point was chosen to prime epithelial cells with the probiotic prior to infection with rotavirus. Plaque assays and genomic analysis provided the basis for establishing the efficacy of probiotics in preventing a rotaviral infection. Plaque assays revealed that the probiotic is capable of decreasing (at least by 100-fold) the levels of live virus when the cells were primed with the probiotic. Results from gene expression studies (a) suggested that homeostasis in the gut is maintained in probiotic-primed cells despite infection with rotavirus and (b) revealed preliminary mechanisms for understanding the pathway of pathogen protection by using probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aha PM, Sabara MI (1990) Development of a rotavirus plaque assay using Sephadex G-75. J Virol Methods 28(1):25–31

    Article  CAS  Google Scholar 

  2. Aich P, Wilson HL, Kaushik RS, Potter AA, Babiuk LA, Griebel P (2007) Comparative analysis of innate immune responses following infection of newborn calves with bovine rotavirus and bovine coronavirus. J Gen Virol 88(Pt 10):2749–2761

    Article  CAS  Google Scholar 

  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  Google Scholar 

  4. Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME (2009) Probiotics and immunity. J Gastroenterol 44(1):26–46

    Article  Google Scholar 

  5. Cario E (2008) Innate immune signalling at intestinal mucosal surfaces: a fine line between host protection and destruction. Curr Opin Gastroenterol 24(6):725–732

    Article  CAS  Google Scholar 

  6. Cunningham-Rundles S, Ahrne S, Bengmark S, Johann-Liang R, Marshall F, Metakis L et al (2000) Probiotics and immune response. Am J Gastroenterol 95(1 Suppl):S22–S25

    Article  CAS  Google Scholar 

  7. de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66

    Google Scholar 

  8. Hirata Y, Broquet AH, Menchen L, Kagnoff MF (2007) Activation of innate immune defense mechanisms by signaling through RIG-I/IPS-1 in intestinal epithelial cells. J Immunol 179(8):5425–5432

    CAS  Google Scholar 

  9. Honda K, Takeda K (2009) Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol 2(3):187–196

    Article  CAS  Google Scholar 

  10. Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73(2 Suppl):444S–450S

    CAS  Google Scholar 

  11. Kaushik RS, Begg AA, Wilson HL, Aich P, Abrahamsen MS, Potter A et al (2008) Establishment of fetal bovine intestinal epithelial cell cultures susceptible to bovine rotavirus infection. J Virol Methods 148(1–2):182–196

    Article  CAS  Google Scholar 

  12. Koyama S, Ishii KJ, Coban C, Akira S (2008) Innate immune response to viral infection. Cytokine 43(3):336–341

    Article  CAS  Google Scholar 

  13. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  14. Parashar UD, Bresee JS, Gentsch JR, Glass RI (1998) Rotavirus. Emerg Infect Dis 4(4):561–570

    Article  CAS  Google Scholar 

  15. Saavedra J (2000) Probiotics and infectious diarrhea. Am J Gastroenterol 95(1 Suppl):S16–S18

    Article  CAS  Google Scholar 

  16. Saif LJ, Smith KL (1985) Enteric viral infections of calves and passive immunity. J Dairy Sci 68(1):206–228

    Article  CAS  Google Scholar 

  17. Sherman PM, Ossa JC, Johnson-Henry K (2009) Unraveling mechanisms of action of probiotics. Nutr Clin Pract 24(1):10–14

    Article  Google Scholar 

  18. Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R et al (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93(2–3):97–108

    Article  CAS  Google Scholar 

  19. Tzipori SR, Makin TJ, Smith ML, Krautil FL (1981) Clinical manifestations of diarrhea in calves infected with rotavirus and enterotoxigenic Escherichia coli. J Clin Microbiol 13(6):1011–1016

    CAS  Google Scholar 

  20. Uematsu S, Akira S (2006) Toll-like receptors and innate immunity. J Mol Med 84(9):712–725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Elaine van Moorlehem for supplying and adapting the EVM07-BIEC. We thank Jamille Heer for maintaining the BIEC and Wayne Connor for technical assistance in running the qRT-PCR analysis. We would also like to thank Neil Rawlyk for technical assistance in growing the bacterial culture. This manuscript is published with the permission of the Director of Vaccine & Infectious Disease Organization as article number 538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palok Aich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, A., Van Moorlehem, E. & Aich, P. Probiotic-Induced Priming of Innate Immunity to Protect Against Rotaviral Infection. Probiotics & Antimicro. Prot. 2, 90–97 (2010). https://doi.org/10.1007/s12602-009-9032-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-009-9032-9

Keywords

Navigation