Skip to main content
Log in

Antibiosis in wild rice accessions induced by Nilaparvata lugens (Stål) feeding

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Plant resistance to phytophagy is one of the pillars of integrated pest management. Five wild rice accessions viz. IRGC99577, IRGC104646, IRGC105270, IRGC105275, CR100204 along with susceptible (TN1) and resistant (Ptb33) controls were studied for levels of antibiosis resistance and their defense response to brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) feeding. Parameters involved in antibiosis resistance viz., honeydew excretion, nymph emergence, nymph survival and development duration and the potential role of antioxidant enzymes viz. superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11) and H2O2 content in imparting antibiosis against BPH was studied during wet (Kharif) crop seasons of 2017 and 2018. Increased level of antioxidant enzymes were recorded after BPH infestation both in leaf blade and sheath in IRGC99577. Higher induced level of peroxidase was observed in Ptb33 and IRGC99577. Maximum percent increase in H2O2 content after insect infestation was observed in IRGC104646 and CR100204 accessions. The correlation between nymph emergence and superoxide dismutase, peroxidase and H2O2 was significantly negative (r = −0.99, −0.89, −0.93, respectively), while, it was significantly positive with catalase and ascorbate peroxidase (r = 0.99 and 0.98, respectively). Enhanced activities of enzymes may impart resistance in selected accessions against BPH as indicated by correlation and regression analysis. IRGC99577 has come out a potential source of resistance against BPH, which could be used in breeding programmes to develop BPH resistant varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alagar, M., & Suresh, S. (2007). Antibiosis mechanism of resistance to brown planthopper, Nilaparvata lugens (Stal.) on selected rice genotypes. Annals of Plant Protection Sciences, 15, 283–286.

    Google Scholar 

  • Ashrith, K. N., Sreenivas, A. G., Guruprasad, G. S., Hanchinal, S. G., & Krishnamurthy, D. (2017). Biochemical basis of resistance in rice against brown and whitebacked planthopper. International Journal of Current Microbiology and Applied Sciences, 6, 1699–1706.

    Google Scholar 

  • Balakrishna, P., & Satyanarayana, P. V. (2013). Genetics of brown planthopper (Nilaparvata lugens Stal.) resistance in elite donors of rice (Oryza sativa L.). The Bioscan, 4, 1413–1416.

    Google Scholar 

  • Barbehenn, R., Dukatz, C., Holt, C., Reese, A., Martiskainen, O., Salminen, J. P., Yip, L., Tran, L., & Constable, C. P. (2010). Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increase plant resistance. Oecologia, 164, 993–1004.

    PubMed  Google Scholar 

  • Bhogadhi, S. C., & Bentur, J. S. (2015). Screening of rice genotypes for resistance to brown planthopper biotype 4 and detection of BPH resistance genes. International Journal of Life Sciences Biotechnology and Pharma Research, 4, 90–95.

    CAS  Google Scholar 

  • Bi, J. L., & Felton, G. W. (1995). Foliar oxidative stress and insect herbivory—Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. Journal of Chemical Ecology, 21, 1511–1530.

    CAS  PubMed  Google Scholar 

  • Bottrell, D. G., & Schoenly, K. G. (2012). Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high yielding rice production in tropical Asia. Journal of Asia-Pacific Entomology, 15, 122–140.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  PubMed  Google Scholar 

  • Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Pinheiro, M. M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35, 1011–1019.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chance, B., & Maehly, A. C. (1955). Effects of saline stress and calcium on lipid composition in bean roots. Phytochemistry, 32, 1131–1136.

    Google Scholar 

  • Chen, Y., Ni, X., & Buntin, G. D. (2009). Physiological, nutritional and biochemical bases of corn resistance to foliage-feeding fall armyworm. Journal of Chemical Ecology, 35, 297–306.

    PubMed  Google Scholar 

  • Gangaraju, P., Shivashankar, T., & Lohithaswa, H. C. (2017). Genetic basis of resistance to brown planthopper (Nilaparvata lugens Stal) in local landraces of rice. International Journal of Current Microbiology and Applied Sciences, 6, 3388–3393.

    Google Scholar 

  • Grant, J. J., & Loake, G. L. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiology, 124, 21–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han, Y., Chao, W., Yang, L., Zhang, D., & Xiao, Y. (2018). Resistance to Nilaparvata lugens in rice lines introgressed with the resistance genes Bph14 and Bph15 and related resistance types. PLoS One, 13(6), e0198630. https://doi.org/10.1371/journal.pone.0198630.

  • He, J., Chen, F., Chen, S., Lv, G., Deng, Y., Fang, W., Liu, Z., Guan, Z., & He, C. (2010). Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology, 168, 687–693.

    PubMed  Google Scholar 

  • Heinrichs, E. A., Medrano, F. G., & Rapusas, H. R. (1985) Genetic Evaluation for Insect Resistance in Rice. Pp 356. International Rice Research Institute, Los Banos, Philippines.

  • Jena, M., Panda, R. S., Sahu, R. K., Mukherjee, A. K., & Dhua, U. (2015). Evaluation of rice genotypes for rice brown planthopper resistance through phenotypic reaction and genotypic analysis. Crop Protection, 78, 119–126.

    Google Scholar 

  • Kaur, R., Gupta, A. K., & Taggar, G. K. (2014). Role of catalase, H2O2 and phenolics in resistance of pigeonpea towards Helicoverpa armigera (Hubner). Acta Physiologiae Plantarum, 36, 1513–1527.

    CAS  Google Scholar 

  • Kaur, H., Salh, P. K., & Singh, B. (2017). Role of defense enzymes and phenolics in resistance of wheat crop (Triticum aestivum L.) towards aphid complex. Journal of Plant Interactions, 12, 304–311.

    CAS  Google Scholar 

  • Khan, Z. R., & Saxena, R. C. (1986). Behavioural and physiological responses of Sogatella furcifera (Horvath) (Delphacidae: Hemiptera) to selected resistant and susceptible rice cultivars. Journal of Economic Entomology, 78, 1280–1286.

    Google Scholar 

  • Khattab, H. (2007). The defense mechanism of cabbage plant against phloem-sucking aphid (Brevicoryne brassicae L.). Australian Journal of Basic and Applied Sciences, 1, 56–62.

    CAS  Google Scholar 

  • Kono, Y., & Fridovich, I. (1982). Superoxide radical inhibits catalase. The Journal of Biological Chemistry, 257, 5751–5754.

    CAS  PubMed  Google Scholar 

  • Li, C., Luo, C., Zhou, Z., Wang, R., Ling, F., Xiao, L., Lin, Y., & Chen, H. (2017). Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation. BMC Plant Biology, 17, 57.

    PubMed  PubMed Central  Google Scholar 

  • Madurangi, S. A. P., Samarasinghe, W. L. G., Senanayake, S. G. J. N., Hemachandra, P. V., & Ratnasekera, D. (2011). Resistance of Oryza nivara and Oryza eichingeri derived lines to brown planhopper, Nilaparvata lugens (Stal). Journal of National Science Foundation of Sri Lanka, 39, 175–181.

    Google Scholar 

  • Maffei, E. M., & Bossi, S. (2006) Electrophysiology and plant responses to biotic stress. In Plant Electrophysiology—Theory and Methods; Volkov, A., Ed.; springer-Verlag: Berlin, Germany, pp. 461–481.

  • Maffei, E. M., Mithöfer, A., & Boland, W. (2007). Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. PhytoChem and Biosub, 68, 2946–2959.

    CAS  Google Scholar 

  • Marklund, S., & Marklund, G. (1974). Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 169–174.

    Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.

    CAS  PubMed  Google Scholar 

  • Nakano, Y., & Asada, K. (1987). Purification of ascorbate peroxidases in spinach chloroplasts: Its inactivation in ascorbata depleted medium and reactivation by monodehydro ascorbata radical. Plant and Cell Physiology, 28, 131–140.

    CAS  Google Scholar 

  • Ni, X., Quisenberry, S. S., Heng-Moss, T., Markwell, J., Sarath, G., & Klucas, R. (2001). Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. Journal of Economic Entomology, 94, 743–751.

    CAS  PubMed  Google Scholar 

  • Pathak, P. K., Saxena, R. C., & Heinrichs, E. A. (1982). Parafilm sachet for measuring honeydew excretion by Nilaparvata lugens on rice. Journal of Economic Entomology, 75, 194–195.

    Google Scholar 

  • Reddy, B. N., Lakshmi, V. J., Maheswari, T. U., Ramulamma, A., & Katti, G. R. (2016). Studies on antibiosis and tolerance mechanism of resistance to brown planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae) in the selected rice entries. The Ecoscan, 10, 269–275.

    CAS  Google Scholar 

  • Shannon, L. M., Kay, E., & Lew, J. Y. (1966). Peroxidase isozymes from horse radish roots I. Isolation and physical properties. The Journal of Biological Chemistry, 241, 2166–2172.

    CAS  PubMed  Google Scholar 

  • Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N., & Feller, U. (2009). Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regulation, 58, 107–117.

    CAS  Google Scholar 

  • Sinha, A. K. (1971). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.

    Google Scholar 

  • Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16, 13561–13578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taggar, G. K., Gill, R. S., Gupta, A. K., & Sandhu, J. S. (2012). Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding. Plant Signalling Behaviour, 7, 1321–1329.

    CAS  Google Scholar 

  • Thamarai, M., & Soundararajan, R. P. (2017). Evaluation of antibiosis resistance to brown planthopper, Nilaparvata lugens (Stal) in rice. Journal of Entomology and Zoology Studies, 5, 954–957.

    Google Scholar 

  • Torres, M. A. (2010). ROS in biotic interactions. Physiologia Plantarum, 138, 414–429.

    CAS  PubMed  Google Scholar 

  • Udayasree, M., & Rajanikanth, P. (2018). Non-preference/antixenosis and antibiosis mechanism contributing to BPH resistance in certain identified elite rice genotypes. International Journal of Current Microbiology and Applied Sciences, 7, 1908–1914.

    Google Scholar 

  • Waetzig, G. H., Sobczak, M., & Grundler, F. M. W. (1999). Localization of hydrogen peroxide during the defence response of Arabidopsis thaliana against the plant-parasitic nematode Heterodera glycine. Nematology, 1, 681–686.

    CAS  Google Scholar 

  • War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signalling Behaviour, 7, 1306–1320.

    Google Scholar 

  • War, A. R., Paulraj, M. G., Ignacimuthu, S., & Sharma, H. C. (2013). Defensive responses in groundnut against chewing and sap sucking insects. Plant Growth Regulation, 3, 259–272.

    Google Scholar 

  • Yang, L., Han, Y., Li, F., Ali, S., & Hou, M. (2017). Silicon amendment is involved in the induction of plant defense responses to a phloem feeder. Scientific Reports, 7, 4232.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Sun, X., Xue, M., Zhang, X., & Li, Q. (2016). Antioxidant enzyme responses induced by whiteflies in tobacco plants in defense against aphids: Catalase may play a dominant role. PLoS One, 11(10), e0165454.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of INSPIRE fellowship by Department of Science and Technology (DST), Government of India, for conducting this research work. We are also grateful to the Incharge Rice section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana for providing infrastructure for conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwinder Kaur Sandhu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhu, R.K., Sarao, P.S. & Sharma, N. Antibiosis in wild rice accessions induced by Nilaparvata lugens (Stål) feeding. Phytoparasitica 48, 801–812 (2020). https://doi.org/10.1007/s12600-020-00835-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00835-2

Keywords

Navigation