Skip to main content
Log in

Characterization of brown planthopper damage on rice crops through hyperspectral remote sensing under field conditions

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Field experiments were conducted to characterize the brown planthopper (BPH) (Nilaparvata lugens (Stål.) damage stress on rice crops through hyperspectral remote sensing. The BPH-damaged rice crop had higher reflectance in visible (VIS) and lower reflectance in near-infrared regions (NIR) of the electromagnetic spectrum compared with uninfested plants. Mean reflectance of the rice crop varied among different BPH damage levels in various wavebands, with the greatest variation in NIR (740–925 nm). Correlations between plant reflectance and BPH damage depicted four sensitive wavelengths, at 764, 961, 1201 and 1664 nm in relation to BPH stress on the rice crop. Three new brown planthopper spectral indices (BPHI) were formulated by combining two or more of these sensitive wavelengths. Some of the hyperspectral indices reported in the literature were also tested for their suitability to detect BPH stress on rice crops. Based on crop reflectance corresponding to the sensitive wavelengths, a multiple-linear regression model was developed (R2=0.71, RMSE=1.74, P<0.0001) and validated (R2=0.73, RMSE = 0.71, P<0.0001) that would help to monitor BPH stress on a rice crop and to issue forewarnings to growers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asner, G. P. (1998). Biophysical and biological sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 234–253.

    Article  Google Scholar 

  • Bauer, M. E. (1985). Spectral inputs in crop identification and condition assessment. Proceedings of the Institute of Electrical and Electronic Engineers, 73, 1071–1085.

    Article  Google Scholar 

  • Carter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15, 697–703.

    Article  Google Scholar 

  • Curran, P. J. (1985). Principles of remote sensing. London, UK: Longman.

    Google Scholar 

  • Gamon, J. A., Peneulas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35–44.

    Article  Google Scholar 

  • Gausman, H. W. (1982). Visible light reflectance, transmittance, and absorptance of differently pigmented cotton leaves. Remote Sensing of Environment, 13, 233–238.

    Article  Google Scholar 

  • Gitelson, A. A., & Merzlyak, M. N. (1996). Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148, 494–500.

    Article  CAS  Google Scholar 

  • Guyot, G., & Baret, F. (1988). Utilisation de la haute résolution spectrale pour suivre l’état des couverts végétaux. In: Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing, pp. 279–286, ESA SP-287 (Assois, France)

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426.

    Article  Google Scholar 

  • Huete, A. R. (1988). Soil influences in remotely sensed vegetation-canopy spectra. pp. 107–141. In G. Asrar (Ed.), Theory and applications of optical remote sensing. New York, NY: John Wiley and Sons.

    Google Scholar 

  • Hunt, J., Raymond, E., & Rock, B. W. (1989). Detection in changes in leaf water content using near and mid infrared reflectance. Remote Sensing of Environment, 30, 45–54.

    Google Scholar 

  • INGER Genetic Resources Center. (1996). Standard evaluation of system for rice (p. 26). Manila, Philippines: International Rice Research Institute.

    Google Scholar 

  • Inoue, Y., Moran, S. M., & Horie, T. (1998). Analysis of spectral measurements in paddy field for predicting rice growth and yield based on a simple crop simulation model. Plant Production Science, 1, 269–279.

    Article  Google Scholar 

  • Inoue, Y., Peñuelas, J., Miyata, A., & Mano, M. (2008). Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice. Remote Sensing of Environment, 112, 156–172.

    Article  Google Scholar 

  • Jones, J. D., Jones, J. B., & Lee, W. S. (2010). Diagnosis of bacterial spot in tomato using spectral signatures. Computers and Electronics in Agriculture, 74, 329–335.

    Article  Google Scholar 

  • Khush, G. S. (2005). What it will take to feed 5 billion rice consumers in 2030. Plant Molecular Biology, 59, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, J., Vashisth, A., Sehgal, V. K., & Gupta, V. K. (2010). Identification of aphid infestation in mustard by hyperspectral remote sensing. Journal of Agricultural Physics, 10, 53–60.

    Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation. New York, NY: John Wiley & Sons Inc.

    Google Scholar 

  • Mass, S. J., & Dunlap, J. R. (1989). Reflectance, transmittance, and absorptance of light by normal, etiolated, and albino corn leaves. Agronomy Journal, 81, 105–110.

    Article  Google Scholar 

  • Mirik, M., Michels, G. J., Jr., Sabina, K. M., & Elliott, N. C. (2007). Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat. Computers and Electronics in Agriculture, 57, 123–134.

    Article  Google Scholar 

  • Mirik, M., Michels, G. J., Jr., Sabina, K. M., Elliott, N. C., & Bowling, R. (2006). Hyperspectral spectrometry as a means to differentiate uninfested and infested winter wheat by greenbug (Hemiptera: Aphididae). Journal of Economic Entomology, 99, 1682–1690.

    Article  PubMed  Google Scholar 

  • Myneni, R. B., & Ross, J. (1991). Photon–vegetation interactions. Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Penuelas, J., Gamon, J. A., Griffin, K. L., & Field, C. B. (1993). Assessing community type, plant biomass, pigment composition and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment, 46, 110–118.

    Article  Google Scholar 

  • Prabhakar, M., Prasad, Y. G., Thirupathi, M., Sreedevi, G., Dharajothi, B., & Venkateswarlu, B. (2011). Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Computers and Electronics in Agriculture, 79, 189–198.

    Article  Google Scholar 

  • Prasannakumar, N. R., Chander, S., Sahoo, R. N., & Gupta, V. K. (2013). Assessment of brown planthopper, (Nilaparvata lugens) [Stål], damage in rice using hyperspectral remote sensing. International Journal of Pest Management, 59, 180–188.

    Article  CAS  Google Scholar 

  • Riedell, W. E., & Blackmer, T. M. (1999). Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Science, 39, 835–1840.

    Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

    Article  Google Scholar 

  • Rouse, J. W. J., Haas, H. R., Schell, A. J., & Deering, W. D. (1974). In: Monitoring vegetation systems in the Great Plains with ERTS. pp. 309– 317. NASA special publication no. 1.

  • Salisbury, F. B., & Ross, C. (1969). Plant physiology. Belmont, CA, USA: Wadsworth.

    Google Scholar 

  • Shibayama, M., Takahashi, W., Morinaga, S., & Akiyama, T. (1993). Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer. Remote Sensing of Environment, 45, 117–126.

    Article  Google Scholar 

  • Srivastava, C., Chander, S., Sinha, S. R., & Palta, R. K. (2009). Toxicity of various insecticides against Delhi and Palla populations of brown planthopper (Nilaparvata lugens). Indian Journal of Agricultural Sciences, 79, 1003–1006.

    CAS  Google Scholar 

  • Yang, C. M., & Chen, R. K. (2004). Modeling rice growth using hyperspectral reflectance data. Crop Science, 44, 1283–1290.

    Article  Google Scholar 

  • Yang, C. M., & Cheng, C. H. (2001). Spectral characteristics of rice plants infested by brown planthoppers. Proceedings of the National Science Council R.O.C., 25,180–186.

    Google Scholar 

  • Yang, C. M., Cheng, C. H., & Chen, R. K. (2007). Changes in spectral characteristics of rice canopy infested with brown plant hopper and leaf folder. Crop Science, 47, 329–335.

    Article  CAS  Google Scholar 

  • Yang, C. M., Liu, C., Yi, C., & Wang, W. (2008). Using Formosat-2 satellite data to estimate leaf area index of rice crop. Journal of Photogrammetry and Remote Sensing, 13, 253–260.

    Google Scholar 

  • Yang, Z., Rao, M. N., Elliott, N. C., Kindler, S. D., & Popham, T. W. (2005). Using ground based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Computers and Electronics in Agriculture, 47, 121–135.

    Article  Google Scholar 

  • Zhang, J. H., Wang, K., Bailey, J. S., & Wang, R. C. (2006). Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere, 16, 108–117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Dean and Joint Director (Education), P.G. School, IARI, New Delhi; and the Head, Division of Entomology and Agricultural Physics, IARI, New Delhi, for their support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Prasannakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasannakumar, N.R., Chander, S. & Sahoo, R.N. Characterization of brown planthopper damage on rice crops through hyperspectral remote sensing under field conditions. Phytoparasitica 42, 387–395 (2014). https://doi.org/10.1007/s12600-013-0375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-013-0375-0

Keywords

Navigation