Skip to main content
Log in

Genetic diversity and differentiation of Helicoverpa armigera nuclear polyhedrosis virus isolates from India

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

India has a rich biodiversity of microbes. Soil is the major source for isolation of entomopathogens, after the infected insects themselves. Four isolates of Helicoverpa armigera nuclear polyhedrosis virus (HearNPV) were obtained from the samples collected one each from Anand, Surat and Junagadh of Gujarat and Patancheru of Andhra Pradesh. All the HearNPV isolates appeared as clear, irregular six-sided objects with rounded edges, phase-bright under phase contrast. Junagadh, Surat, Patancheru and Anand isolates gave 27.47–42.80%, 36.83–51.32%, 26.05–43.76% and 42.99–54.85% mortality, respectively, when the percent mortality was pooled over period. The least number of HearNPV polyhedral inclusion bodies (PIBs) (5.1 × 107) of the Anand isolate were required to kill 50% of the H. armigera population within 120 h. The Anand isolate was fastest (90.30 h), followed by Surat (120.26 h), Junagadh (139.53 h) and Patancheru (143.10 h) in killing 50% of the H. armigera population at a dose of 109 PIBs ml−1. RAPD analysis of all 15 arbitrary oligonucleotide primers generated 353 scorable bands with 201 loci. A total of 181 polymorphic bands were obtained, ranging in size from 141 to 1,873 base pairs. The percentage of polymorphic loci was 90.19%. The mean polymorphism information content (PIC) value for 15 primers was found to be 0.99. The similarity coefficient values based on 15 RAPD markers ranged from 0.235 to 0.407. The four isolates were grouped into two clusters: one cluster consisted of Junagadh and Anand and the second cluster consisted of Surat and Patancheru.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams, J. R., & McClintock, J. T. (1991). Nuclear polyhedrosis viruses of insects. In J. R. Adams & J. R. Bonami (Eds.), Atlas of invertebrate viruses (pp. 87–204). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Barreto, M. R., Guimaraes, C. T., Teixeira, F. F., Paiva, E., & Valicente, F. H. (2005). Effect of Baculovirus spodoptera isolates in Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) larvae and their characterization by RAPD. Neotropical Entomology, 34(1), 67–75.

    Article  Google Scholar 

  • Cory, J. S., Green, B. M., Paul, R. K., & Hunter-Fujita, F. (2005). Genotypic and phenotypic diversity of a baculovirus population within an individual insect host. Journal of Invertebrate Pathology, 89, 101–111.

    Article  PubMed  Google Scholar 

  • Finney, D. J. (1971). Probit analysis (3rd ed.). London, UK: Cambridge University Press.

    Google Scholar 

  • Getting, R. R., & McCarthy, W. J. (1982). Genotypic variation among wild isolates of Heliothis spp. nuclear polyhedrosis viruses from different geographical regions. Virology, 47, 245–252.

    Article  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. New York, NY: Wiley InterScience.

    Google Scholar 

  • Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles, 44, 223–270.

    Google Scholar 

  • Jones, K. A. (2000). Bioassays of entomopathogenic viruses. In A. Navon & K. R. S. Ascher (Eds.), Bioassays of entomopathogenic microbes and nematodes (pp. 95–140). Wallingford, UK: CAB International.

    Google Scholar 

  • Ma, X., Xu, H., Tang, M., Xiao, Q., Hong, J., & Zhang, C. (2006). Morphological, phylogenetic and biological characteristics of Ectropis obliqua single-nucleocapsid nucleopolyhedrovirus. The Journal of Microbiology, 44, 77–82.

    CAS  PubMed  Google Scholar 

  • Malla, P. (1992). The insecticidal crystal protein Cry IA(c) from Bacillus thuringiensis is highly toxic for Heliothis armigera. Journal of Invertebrate Pathology, 59, 109–111.

    Article  Google Scholar 

  • Mcintosh, A. H., Grasela, J. J., & Goodman, C. L. (2005). A simplified and rapid method for extraction of DNA from baculovirus occlusion bodies. Resource document: www.bioprocessingjournal.com. Accessed 4 January 2007.

  • Odak, S. C., Srivastava, D. K., Mishra, V. K., & Nema, K. K. (1982). Preliminary studies on the pathogenicity of Bacillus thuringiensis and nuclear polyhedrosis virus on Heliothis armigera host in the laboratory and pot experiment. Legumes Research, 5, 13–17.

    Google Scholar 

  • Ogembo, J. G., Kunjeku, E. C., & Sithanantham, S. (2005). A preliminary study on the pathogenicity of two isolates of nucleopolyhedroviruses infecting African bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science, 25, 218–222.

    Article  Google Scholar 

  • Ogembo, J. G., Chaeychomsri, S., Kamiya, K., Ishikawa, H., Katou, Y., Ikeda, M., et al. (2007). Cloning and comparative characterization of nucleopolyhedroviruses isolated from African bollworm, Helicoverpa armigera (Lepidoptera: Noctudiae), in different geographic regions. Journal of Insect Biotechnology and Sericology, 76, 39–49.

    CAS  Google Scholar 

  • Rabindra, R. J., Ethiraju, S., & Jayaraj, S. (1991). Efficacy of nuclear polyhedrosis virus formulations against Heliothis armigera (Hüb.) sunflower. Journal of Biological Control, 4, 130–131.

    Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics: A biometrical approach (2nd ed.). New Delhi, India: McGraw-Hill Koga-Kusha.

    Google Scholar 

  • Sudhakar, S., & Mathavan, S. (1999). Electron microscopical studies and restriction analysis of Helicoverpa armigera nucleopolyhedrosis virus. Journal of Biology, 24, 361–370.

    CAS  Google Scholar 

  • Teakle, R. E., Jensen, J. M., & Giles, J. G. (1985). Susceptibility of Heliothis armigera to commercial nuclear polyhedrosis virus. Journal of Invertebrate Pathology, 46, 166–173.

    Article  Google Scholar 

  • Vasiljevic, L., & Injac, M. (1973). A study of gypsy moth viruses originating from different geographical regions. Plant Protection, 24, 169–186.

    Google Scholar 

  • WeiDe, S., Bing, L., Ping, J., & LiHua, L. (2003). RAPD analysis of nuclear polyhedrosis virus (NPV) from Bombyx mandarina, Bombyx mori and Antheraea pernyi. Acta Sericologica Sinica, 29, 148–150.

    Google Scholar 

  • Zhang, C. X., Ma, X. C., & Guo, Z. J. (2005). Comparison of the complete genome sequence between C1 and G4 isolates of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus. Virology, 333, 190–199.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charmi Shailesh Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, C.S., Jani, J.J., Parekh, V.B. et al. Genetic diversity and differentiation of Helicoverpa armigera nuclear polyhedrosis virus isolates from India. Phytoparasitica 37, 407–413 (2009). https://doi.org/10.1007/s12600-009-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-009-0060-5

Keywords

Navigation