Skip to main content
Log in

An inventory model for imperfect quality items considering learning effects and partial trade credit policy

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

The incorporation of payment schemes and imperfect production has received considerable attention in the literature on inventory management; however, researchers have rarely considered these two challenges concurrently. The significance of employing both imperfect production and delay in payment is that both of these challenges affect the profit obtained directly. The total obtained profit can be mitigated by increasing the waste and reducing the number of sold perfect items and delay in payment stimulates the buyers to purchase items and settle their accounts in a specific period. This paper proposes a three-echelon inventory model that (a) Imperfect production is permissible; (b) Inspectors make errors during the inspection process and the errors can be diminished by learning from their previous performance; (c) It is practical to categorize customers into new and old types when old customers are prioritized to receive a full trade credit. As the retailer learns from the experience of screening, the probability of misclassification errors and inspection time decrease for two distinct cases of delay in payment to provide optimal replenishment and promotional decisions. To make a better connection to practical issues, a case study is elaborated. To validate the mathematical model, the impact of the inspector's learning on variables and the total profit is compared in different cases. The analysis shows that it is beneficial for the retailer to make shorter contracts, particularly with new customers to maximize the expected total profit per unit time. Eventually, a numerical experiment is conducted for each subcase to illustrate the impact of learning and determining the optimal policy for the retailer, then some implications for future contributions are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bose, D., Guha, A.: Economic production lot sizing under imperfect quality, on-line inspection, and inspection errors: full vs. sampling inspection. Comput. Ind. Eng. 160, 107565 (2021)

    Article  Google Scholar 

  2. Cambini, A., Martein, L. (2009). Convex Functions Generalized Convexity and Optimization: Theory and Applications, Springer.

  3. Chang, C.-T., Cheng, M.-C., Soong, P.-Y.: Impacts of inspection errors and trade credits on the economic order quantity model for items with imperfect quality. Int. J. Syst. Sci. Oper. Logist. 3, 34–48 (2016)

    Google Scholar 

  4. Chang, C.-T., Ouyang, L.-Y., Teng, J.-T., Lai, K.-K., Cárdenas-Barrón, L.E.: Manufacturer’s pricing and lot-sizing decisions for perishable goods under various payment terms by a discounted cash flow analysis. Int. J. Prod. Econ. 218, 83–95 (2019)

    Article  Google Scholar 

  5. Dey, O., Giri, B.: A new approach to deal with learning in inspection in an integrated vendor-buyer model with imperfect production process. Comput. Ind. Eng. 131, 515–523 (2019)

    Article  Google Scholar 

  6. Fu, K., Chen, Z., Sarker, B.R.: An optimal decision policy for a single-vendor single-buyer production-inventory system with leaning effect, fuzzy demand and imperfect quality. J. Inf. Optim. Sci. 40, 633–658 (2019)

    Google Scholar 

  7. Ganesan, S., Uthayakumar, R.: EPQ models with bivariate random imperfect proportions and learning-dependent production and demand rates. J. Manag. Anal. 8(1),1–37 (2020)

    Google Scholar 

  8. Gautam, P., Maheshwari, S., Kausar, A., Jaggi, C.K. (2021). Inventory models for imperfect quality items: a two-decade review. In Kapur, P. K., Singh, G., Panwar, S.,(Eds.), Adv. Interdiscip. Res. Eng. Bus. Manag. (pp.185–215), Springer

  9. Giri, B., Sharma, S.: Integrated model for an imperfect production-inventory system with a generalised shipment policy, errors in quality inspection and ordering cost reduction. Int. J. Syst. Sci. Oper. Logist. 4, 260–274 (2017)

    Google Scholar 

  10. Hsu, L.-F., Hsu, J.-T.: Economic production quantity (EPQ) models under an imperfect production process with shortages backordered. Int. J. Syst. Sci. 47, 852–867 (2016)

    Article  Google Scholar 

  11. Jayaswal, M., Sangal, I., Mittal, M., Malik, S.: Effects of learning on retailer ordering policy for imperfect quality items with trade credit financing. Uncertain. Supply Chain Manag. 7, 49–62 (2019)

    Article  Google Scholar 

  12. Jayaswal, M.K., Mittal, M., Sangal, I.: Ordering policies for deteriorating imperfect quality items with trade-credit financing under learning effect. Int. J. Syst. Assur. Eng. Manag. 12, 112–125 (2021)

    Article  Google Scholar 

  13. Kazemi, N., Abdul-Rashid, S.H., Ghazilla, R.A.R., Shekarian, E., Zanoni, S.: Economic order quantity models for items with imperfect quality and emission considerations. Int. J. Syst. Sci. Oper. Logist. 5, 99–115 (2018)

    Google Scholar 

  14. Khan, M., Jaber, M., Wahab, M.: Economic order quantity model for items with imperfect quality with learning in inspection. Int. J. Prod. Econ. 124, 87–96 (2010)

    Article  Google Scholar 

  15. Khanna, A., Kishore, A., Jaggi, C.: Strategic production modeling for defective items with imperfect inspection process, rework, and sales return under two-level trade credit. Int. J. Ind. Eng. Comput. 8, 85–118 (2017)

    Google Scholar 

  16. Khanna, A., Kishore, A., Sarkar, B., Jaggi, C.K.: Supply chain with customer-based two-level credit policies under an imperfect quality environment. Mathematics 6, 299 (2018)

    Article  Google Scholar 

  17. Khanna A, Kishore A, Sarkar B, Jaggi CK (2020) Inventory and pricing decisions for imperfect quality items with inspection errors, sales returns, and partial backorders under inflation RAIRO: Recherche Opérationnelle 54

  18. Khara, B., Dey, J.K., Mondal, S.K.: An integrated imperfect production system with advertisement dependent demand using branch and bound technique. Flex. Serv. Manuf. J. 33, 1–39 (2020)

    Google Scholar 

  19. Kishore, A., Gautam, P., Khanna, A., Jaggi, C.K.: Investigating the effect of learning on setup cost in imperfect production systems using two-way inspection plan for rework under screening constraints. Sci. Iran. 27(6), 3265–3288 (2020)

    Google Scholar 

  20. Lopes, R.: Integrated model of quality inspection, preventive maintenance and buffer stock in an imperfect production system. Comput. Ind. Eng. 126, 650–656 (2018)

    Article  Google Scholar 

  21. Mahata, G.C., De, S.K.: Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers. Int. J. Manag. Sci. Eng. Manag. 12, 21–32 (2017)

    Google Scholar 

  22. Mahato, C., Mahata, G.C.: Optimal inventory policies for deteriorating items with expiration date and dynamic demand under two-level trade credit. Opsearch 58, 1–24 (2021)

    Article  Google Scholar 

  23. Min, J., Zhou, Y.-W., Zhao, J.: An inventory model for deteriorating items under stock-dependent demand and two-level trade credit. Appl. Math. Model. 34, 3273–3285 (2010)

    Article  Google Scholar 

  24. Ouyang, L.-Y., Chang, C.-T.: Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging. Int. J. Prod. Econ. 144, 610–617 (2013)

    Article  Google Scholar 

  25. Rad, M.A., Khoshalhan, F., Glock, C.H.: Optimal production and distribution policies for a two-stage supply chain with imperfect items and price-and advertisement-sensitive demand: a note. Appl. Math. Model. 57, 625–632 (2018)

    Article  Google Scholar 

  26. Salameh, M., Jaber, M.: Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ. 64, 59–64 (2000)

    Article  Google Scholar 

  27. Sangal, I., Shaw, B.K., Sarkar, B., Guchhait, R.: A joint inventory model with reliability, carbon emission, and inspection errors in a defective production system. Yugoslav J. Oper. Res. 30, 381–398 (2020)

    Article  Google Scholar 

  28. Sarkar, B., Mandal, P., Sarkar, S.: An EMQ model with price and time dependent demand under the effect of reliability and inflation. Appl. Math. Comput. 231, 414–421 (2014)

    Google Scholar 

  29. Sarkar, B., Saren, S.: Product inspection policy for an imperfect production system with inspection errors and warranty cost. Eur. J. Oper. Res. 248, 263–271 (2016)

    Article  Google Scholar 

  30. Sarkar, B., Sett, B.K., Sarkar, S.: Optimal production run time and inspection errors in an imperfect production system with warranty. J. Ind. Manag. Optim. 14, 267 (2018)

    Article  Google Scholar 

  31. Sepehri, A., Gholamian, M.R.: Joint pricing and lot-sizing for a production model under controllable deterioration and carbon emissions. Int. J. Syst. Sci. Oper. Logist. 9(3), 1–15 (2021)

    Google Scholar 

  32. Sepehri, A., Gholamian, M.R.: A sustainable inventory model for perishable items considering waste treatment for returning items Journal of Industrial and Systems. J Ind Syst Eng 13, 70–86 (2021)

    Google Scholar 

  33. Sepehri, A., Gholamian, M.R.: A green inventory model with imperfect items considering inspection process and quality improvement under different shortages scenarios. Online, Environ. Dev. Sustain. 1–29 (2022)

  34. Shah, N.H., Rabari, K., Patel, E.: An inventory model for deteriorating items with constant demand under two-level trade-credit policies. In: Decision Making in Inventory Management. Springer, pp. 91–103 (2021)

  35. Sharma, A., Sharma, U., Singh, C.: An analysis of replenishment model of deteriorating items with ramp-type demand and trade credit under the learning effect. Int. J. Procure. Manag. 11(3), 313–342 (2018)

    Google Scholar 

  36. Teng, J.-T.: Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad credit customers. Int. J. Prod. Econ. 119, 415–423 (2009)

    Article  Google Scholar 

  37. Tiwari, S., Kazemi, N., Modak, N.M., Cárdenas-Barrón, L.E., Sarkar, S.: The effect of human errors on an integrated stochastic supply chain model with setup cost reduction and backorder price discount. Int. J. Prod. Econ. 226, 107643 (2020)

    Article  Google Scholar 

  38. Wu, J., Chan, Y.-L.: Lot-sizing policies for deteriorating items with expiration dates and partial trade credit to credit-risk customers. Int. J. Prod. Econ. 155, 292–301 (2014)

    Article  Google Scholar 

  39. Yadav, R., Pareek, S., Mittal, M.: Supply chain models with imperfect quality items when end demand is sensitive to price and marketing expenditure. RAIRO-Oper. Res. 52, 725–742 (2018)

    Article  Google Scholar 

  40. Yoo, S.H., Kim, D., Park, M.-S.: Economic production quantity model with imperfect-quality items, two-way imperfect inspection and sales return. Int. J. Prod. Econ. 121, 255–265 (2009)

    Article  Google Scholar 

  41. Zhou, Y., Chen, C., Li, C., Zhong, Y.: A synergic economic order quantity model with trade credit, shortages, imperfect quality and inspection errors. Appl. Math. Model. 40, 1012–1028 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Conceptualization, SM and MRG; Supervision, MRG; Writing-original draft, SM; Writing-review and editing, MRG and AS.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Gholamian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Expressions of \({\mathrm{X}}_{1}, {\mathrm{X}}_{2}, \dots, {\mathrm{X}}_{10}\) which are required for constructing the total profit of Subcase 1.1 are illustrated as follows.

$${\mathrm{X}}_{1}=\frac{1}{(1-\theta )}\left\{\mu (1-\theta )(1-{\mathrm{q}}_{1})+\mathrm{v}\left[\theta (1-{\mathrm{q}}_{2})+(1-\theta){\mathrm{q}}_{1}+\theta {\mathrm{q}}_{2}\right]-\upmu (1-\upgamma )(1-\theta)(1-{\mathrm{q}}_{1})(1-\beta)(1-\alpha)- \mathrm{C}-\mathrm{d}-{\mathrm{C}}_{1}(1-\theta){\mathrm{q}}_{1}- {\mathrm{C}}_{2}\theta {\mathrm{q}}_{2}+\frac{\theta {\mathrm{q}}_{2}{\mathrm{hw}}_{2}}{2}\right\}.$$
(60)
$${\mathrm{X}}_{2}=\frac{1}{\left(1-\theta \right)}\mathrm{S}\left(\left(1-\theta \right){\mathrm{q}}_{1}+\theta \left(1-{\mathrm{q}}_{2}\right)\right).$$
(61)
$${\mathrm{X}}_{3}=\frac{-1}{\left(1-\theta \right)}\left\{{\mathrm{q}}_{1}{\mathrm{w}}_{1}\left(-\mu \left(1-\theta \right)+\mathrm{v}\left(1-\theta \right)+\upmu \left(1-\gamma \right)\left(1-\theta \right)\left(1-\beta \right)\left(1-\alpha \right)-{\mathrm{C}}_{1}\left(1-\theta \right)\right)-{\mathrm{q}}_{2}{\mathrm{w}}_{2}{\mathrm{C}}_{2}\theta \right\}.$$
(62)
$${\mathrm{X}}_{4}=\frac{1}{\left(1-\theta \right)}\left\{{\mathrm{q}}_{1}{\mathrm{w}}_{1}\mathrm{S}(1-\theta )+\mathrm{S}\theta {\mathrm{q}}_{2}{\mathrm{w}}_{2}\right\}.$$
(63)
$${\mathrm{X}}_{5}=\left({\mathrm{CI}}_{\mathrm{P}}(\gamma \left(1-\alpha \right)\mathrm{S}-\alpha \left(\mathrm{N}-\mathrm{S}\right)-\left(1-\alpha \right)\left(1-\gamma \right)\left(\mathrm{N}-\mathrm{S}\right))\right).$$
(64)
$${\mathrm{X}}_{6}=\frac{1}{{\mathrm{x}}_{0}{\left(\left(1-\theta \right)\right)}^{2}}\left[\left(1-\theta \right){\mathrm{q}}_{1}{\mathrm{w}}_{1}-\theta {\mathrm{q}}_{2}{\mathrm{w}}_{2}\right].$$
(65)
$${\mathrm{X}}_{7}=\frac{1}{{\mathrm{x}}_{0}{\left(\left(1-\theta \right)\right)}^{2}}\left[\left(1-\theta \right){\mathrm{q}}_{1}+\theta -\theta {\mathrm{q}}_{2}\right].$$
(66)
$${\mathrm{X}}_{8}=\left(\frac{\mathrm{h}}{2}+\frac{{\mathrm{CI}}_{\mathrm{P}}\left(1-\alpha \right)\left(1-\gamma \right)}{2}+\frac{{\mathrm{CI}}_{\mathrm{P}}\alpha }{2}+\frac{{\mathrm{CI}}_{\mathrm{P}}\gamma \left(1-\alpha \right)}{2}\right).$$
(67)
$${\mathrm{X}}_{9}=\left(\frac{\theta {\mathrm{q}}_{2}\mathrm{h}}{2\left(1-\theta \right)}\right).$$
(68)
$${\mathrm{X}}_{10}=-\frac{1}{2}(\mu {\mathrm{I}}_{\mathrm{e}}(\gamma \left(1-\alpha \right){\mathrm{S}}^{2}+\alpha {\left(\mathrm{S}-\mathrm{N}\right)}^{2}+\left(1-\alpha \right)\left(1-\gamma \right)\beta {\left(\mathrm{S}-\mathrm{N}\right)}^{2})-{\mathrm{CI}}_{\mathrm{P}}\left(\gamma \left(1-\alpha \right){\mathrm{S}}^{2}+\left(1-\alpha \right)\left(1-\gamma \right){\left(\mathrm{N}-\mathrm{S}\right)}^{2}+\alpha {\left(\mathrm{N}-\mathrm{S}\right)}^{2}\right).$$
(69)

Expressions of \({\mathrm{X}}_{11}, {\mathrm{X}}_{12},\) and \({\mathrm{X}}_{13}\) which are required for constructing the total profit of Subcase 1.2 are illustrated as follows.

$${\mathrm{X}}_{11}=\mu {\mathrm{I}}_{\mathrm{e}}\gamma \left(1-\alpha \right)\mathrm{S}-{\mathrm{CI}}_{\mathrm{P}}\alpha \left(\mathrm{N}-\mathrm{S}\right)-{\mathrm{CI}}_{\mathrm{P}}\left(1-\alpha \right)\left(1-\gamma \right)\left(\mathrm{N}-\mathrm{S}\right).$$
(70)
$${\mathrm{X}}_{12}=\left(\frac{\mathrm{h}}{2}+\frac{\mu {\mathrm{I}}_{\mathrm{e}}\gamma \left(1-\alpha \right)}{2}+\frac{{\mathrm{CI}}_{\mathrm{P}}\left(1-\alpha \right)\left(1-\gamma \right)}{2}+\frac{{\mathrm{CI}}_{\mathrm{P}}\alpha }{2}\right).$$
(71)
$${\mathrm{X}}_{13}=-\frac{1}{2}\left(\mu {\mathrm{I}}_{\mathrm{e}}\left(\alpha {\left(\mathrm{S}-\mathrm{N}\right)}^{2}+\left(1-\alpha \right)\left(1-\gamma \right)\beta {\left(\mathrm{S}-\mathrm{N}\right)}^{2}\right)-{\mathrm{CI}}_{\mathrm{P}}\left(\left(1-\alpha \right)\left(1-\gamma \right){\left(\mathrm{N}-\mathrm{S}\right)}^{2}+\alpha {\left(\mathrm{N}-\mathrm{S}\right)}^{2}\right)\right).$$
(72)

Expressions of \({\mathrm{X}}_{14}, {\mathrm{X}}_{15}, \dots, {\mathrm{X}}_{19}\) which are required for constructing the total profit of Subcase 1.3 are illustrated as follows.

$${\mathrm{X}}_{14}=\frac{1}{\left(1-\theta \right)}\left(\mathrm{S}\theta {\mathrm{q}}_{2}+\theta {\mathrm{q}}_{2}{\mathrm{w}}_{2}\right).$$
(73)
$${\mathrm{X}}_{15}=\frac{\mathrm{S}\theta {\mathrm{q}}_{2}{\mathrm{w}}_{2}}{\left(1-\theta \right)}.$$
(74)
$${\mathrm{X}}_{16}=\left(\mu {\mathrm{I}}_{\mathrm{e}}(\alpha \left(\mathrm{S}-\mathrm{N}\right)+\left(1-\alpha \right)\gamma \mathrm{S}+\left(1-\alpha \right)\left(1-\gamma \right)\beta \left(\mathrm{S}-\mathrm{N}\right))\right).$$
(75)
$${\mathrm{X}}_{17}=\frac{{\mathrm{vI}}_{\mathrm{e}}\theta {\mathrm{q}}_{2}}{{\mathrm{x}}_{0}{\left(\left(1-\theta \right)\right)}^{2}}.$$
(76)
$${\mathrm{X}}_{18}=\frac{1}{2}\left(\mathrm{h}+\mu {\mathrm{I}}_{\mathrm{e}}(\alpha +\left(1-\gamma \right)\left(1-\alpha \right)\upbeta +\gamma (1-\alpha ))\right).$$
(77)
$${\mathrm{X}}_{19}=\frac{{\mathrm{vI}}_{\mathrm{e}}\theta {\mathrm{q}}_{2}}{(1-\theta )}.$$
(78)

Expression of \({\mathrm{X}}_{20}\) which is required for constructing the total profit of the Subcase 2.1 is illustrated as follows.

$${\mathrm{X}}_{20}=\left(\frac{{\mathrm{CI}}_{\mathrm{P}}\gamma \left(1-\alpha \right){\mathrm{S}}^{2}}{2}-\frac{\upmu {\mathrm{I}}_{\mathrm{e}}\gamma \left(1-\alpha \right){\mathrm{S}}^{2}}{2}\right).$$
(79)

Appendix 2

To satisfy the necessary conditions of concavity for Subcase 1.1, first and second-order derivatives of \({TP}_{1}\) are calculated. The second-order derivatives concerning variables should be negative.

The first derivative of \({TP}_{1}\) concerning \(e\) is obtained as follows.

$$\frac{\partial {TP}_{1}\left(e,T\right)}{\partial \mathrm{e}}=\frac{4\mathrm{b}{e}^{3}({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2})}{\mathrm{F}(T)}+\frac{4\mathrm{b}{e}^{3}({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4})}{T(\mathrm{F}(T))}+4\mathrm{b}{e}^{3}{\mathrm{X}}_{5}-\frac{3\mathrm{b}{e}^{2}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(\mathrm{E}\left(T\right)\right)}^{2}{\left(\mathrm{F}\left(T\right)\right)}^{2}}+\frac{8\mathrm{b}{e}^{3}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{\left(\mathrm{E}\left(T\right)\right){\left(\mathrm{F}\left(T\right)\right)}^{2}}-4\mathrm{b}{e}^{3}T\left({\mathrm{X}}_{8}+\frac{{\mathrm{X}}_{9}}{\mathrm{F}\left(T\right)}\right)-\frac{4{e}^{3}\left(\mathrm{G}+{\mathrm{bX}}_{10}\right)}{T}.$$
(80)

The second derivative of \({TP}_{1}\) concerning \(e\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{1}\left(e,T\right)}{\partial {e}^{2}}=\frac{12b{e}^{2}({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2})}{\mathrm{F}(T)}+\frac{12\mathrm{b}{e}^{2}({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4})}{T\mathrm{F}(T)}+12\mathrm{b}{e}^{2}{\mathrm{X}}_{5}+\frac{18{\mathrm{b}}^{2}{e}^{4}{(\mathrm{a}+\mathrm{b}{e}^{4})}^{2}{\mathrm{y}}^{2}(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}})({\mathrm{X}}_{6}-T{\mathrm{X}}_{7})}{{T}^{2}{(\mathrm{E}(T))}^{3}{(\mathrm{F}(T))}^{2}}+\frac{\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{\mathrm{E}(T)(\mathrm{F}{(T))}^{2}}\left(32{\mathrm{b}}^{2}{e}^{6}+24\mathrm{b}{e}^{2}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\right)-\frac{\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(\mathrm{E}\left(T\right)\right)}^{2}(\mathrm{F}{(T))}^{2}}\left(48{\mathrm{b}}^{2}{e}^{5}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)+6\mathrm{b}e{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\right)-12\mathrm{b}{e}^{2}T\left({\mathrm{X}}_{8}+\frac{{\mathrm{X}}_{9}}{\mathrm{F}\left(T\right)}\right)-\frac{12{e}^{2}\left(\mathrm{G}+{\mathrm{bX}}_{10}\right)}{T}\le 0.$$
(81)

The first derivative of \({TP}_{1}\) concerning \(T\) is obtained as follows.

$$\frac{\partial {TP}_{1}\left(e,T\right)}{\partial T}=\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2})}{{T}^{2}{(\mathrm{F}(T))}^{2}}+\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4})}{{T}^{3}{(\mathrm{F}(T))}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4}\right)}{{T}^{2}\left(\mathrm{F}\left(T\right)\right)}-\frac{{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{X}}_{7}}{\left(\mathrm{E}\left(T\right)\right){\left(\mathrm{F}\left(T\right)\right)}^{2}}+\frac{2{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}\left(\mathrm{E}\left(T\right)\right){\left(\mathrm{F}\left(T\right)\right)}^{3}}+\frac{\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{\mathrm{T}}^{2}{\left(\mathrm{E}\left(T\right)\right)}^{2}{\left(\mathrm{F}\left(T\right)\right)}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{9}}{T{\left(\mathrm{F}\left(T\right)\right)}^{2}}-\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{8}+\frac{{\mathrm{X}}_{9}}{\mathrm{F}\left(T\right)}\right)+\frac{\mathrm{O}+{\mathrm{aX}}_{10}+{e}^{4}\left(\mathrm{G}+{\mathrm{bX}}_{10}\right)}{{T}^{2}}.$$
(82)

The second derivative of \({TP}_{1}\) concerning \(T\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{1}\left(e,T\right)}{\partial {T}^{2}}=\frac{2(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2})}{{T}^{4}{(\mathrm{F}(T))}^{3}}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2}\right)}{{T}^{3}{\left(\mathrm{F}\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4}\right)}{{T}^{5}{\left(\mathrm{F}\left(T\right)\right)}^{3}}-\frac{4\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4}\right)}{{T}^{4}{\left(\mathrm{F}\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4}\right)}{{T}^{3}\left(\mathrm{F}\left(T\right)\right)}-\frac{4{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{7}}{{T}^{2}\left(\mathrm{E}\left(T\right)\right){\left(\mathrm{F}\left(T\right)\right)}^{3}}-\frac{2\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{X}}_{7}}{{T}^{2}{\left(\mathrm{E}\left(T\right)\right)}^{2}{\left(\mathrm{F}\left(T\right)\right)}^{2}}+\frac{6{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}\left(\mathrm{E}\left(T\right)\right){\left(\mathrm{F}\left(T\right)\right)}^{4}}+\frac{4\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(\mathrm{E}\left(T\right)\right)}^{2}{\left(\mathrm{F}\left(T\right)\right)}^{3}}-\frac{4{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}\mathrm{E}\left(T\right){\left(\mathrm{F}\left(T\right)\right)}^{3}}+\frac{2{\mathrm{b}}^{2}{e}^{6}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}{\mathrm{y}}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(\mathrm{E}\left(T\right)\right)}^{3}{\left(\mathrm{F}\left(T\right)\right)}^{2}}-\frac{2\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}{\left(\mathrm{E}\left(T\right)\right)}^{2}{\left(\mathrm{F}\left(T\right)\right)}^{2}}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}{\mathrm{X}}_{9}}{{T}^{3}{\left(\mathrm{F}\left(T\right)\right)}^{3}}-\frac{2\left(\mathrm{O}+{\mathrm{aX}}_{10}+{e}^{4}\left(\mathrm{G}+{\mathrm{bX}}_{10}\right)\right)}{{T}^{3}}\le 0.$$
(83)

Due to the complexity of terms in second-order derivatives, the concavity of the total profit function is proved in the section of the numerical experiment.

To satisfy the sufficient condition of concavity for Subcase 1.1, the determinant of the corresponding Hessian matrix must be positive which is formulated as follows.

$$The\, determinant \,of \,H\left({TP}_{1}\left(e,T\right)\right)=\left|\begin{array}{cc}\frac{{\partial }^{2}{TP}_{1}\left(e,T\right)}{{e}^{2}}& \frac{{\partial }^{2}{TP}_{1}\left(e,T\right)}{\partial e\partial T}\\ \frac{{\partial }^{2}{TP}_{1}\left(e,T\right)}{\partial T\partial e}& \frac{{\partial }^{2}{TP}_{1}\left(e,T\right)}{\partial {T}^{2}}\end{array}\right|\ge 0.$$
(84)

Due to the complexity of terms in the Hessian matrix, it is not convenient to prove the positivity of the determinant of the Hessian matrix. Therefore, the positivity of the Hessian matrix is proved in a numerical experiment.

Appendix 3

To satisfy the necessary conditions of concavity for Subcase 1.2, first and second-order derivatives of \({TP}_{2}\) are calculated. The second-order derivatives concerning variables should be negative.

The first derivative of \({TP}_{2}\) concerning \(e\) is obtained as follows.

$$\frac{\partial {TP}_{2}\left(e,T\right)}{\partial e}=\frac{4\mathrm{b}{e}^{3}({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2})}{\mathrm{F}(T)}+\frac{4\mathrm{b}{e}^{3}({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4})}{T(\mathrm{F}(T))}+4\mathrm{b}{e}^{3}{\mathrm{X}}_{11}-\frac{3\mathrm{b}{e}^{2}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(\mathrm{E}\left(T\right)\right)}^{2}{\left(\mathrm{F}\left(T\right)\right)}^{2}}+\frac{8\mathrm{b}{e}^{3}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{\left(\mathrm{E}\left(T\right)\right){\left(\mathrm{F}\left(T\right)\right)}^{2}}-4\mathrm{b}{e}^{3}T\left({\mathrm{X}}_{12}+\frac{{\mathrm{X}}_{9}}{\mathrm{F}\left(T\right)}\right)-\frac{4{e}^{3}\left(\mathrm{G}+{\mathrm{bX}}_{13}\right)}{T}.$$
(85)

The second derivative of \({TP}_{2}\) concerning \(e\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{2}\left(e,T\right)}{\partial {e}^{2}}=\frac{12\mathrm{b}{e}^{2}({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2})}{\mathrm{F}(T)}+\frac{12\mathrm{b}{e}^{2}({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4})}{T\mathrm{F}(T)}+12\mathrm{b}{e}^{2}{\mathrm{X}}_{11}+\frac{18{\mathrm{b}}^{2}{e}^{4}{(\mathrm{a}+\mathrm{b}{e}^{4})}^{2}{\mathrm{y}}^{2}(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}})({\mathrm{X}}_{6}-T{\mathrm{X}}_{7})}{{T}^{2}{(\mathrm{E}(T))}^{3}{(\mathrm{F}(T))}^{2}}+\frac{\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{\mathrm{E}(T)(\mathrm{F}{(T))}^{2}}\left(32{\mathrm{b}}^{2}{e}^{6}+24\mathrm{b}{e}^{2}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\right)-\frac{\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(\mathrm{E}\left(T\right)\right)}^{2}(\mathrm{F}{(T))}^{2}}\left(48{\mathrm{b}}^{2}{e}^{5}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)+6\mathrm{b}e{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\right)-12\mathrm{b}{e}^{2}T\left({\mathrm{X}}_{12 }+\frac{{\mathrm{X}}_{9}}{\mathrm{F}\left(T\right)}\right)-\frac{12{e}^{2}\left(\mathrm{G}+{\mathrm{bX}}_{13}\right)}{T}\le 0.$$
(86)

The first derivative of \({TP}_{2}\) concerning \(T\) is obtained as follows.

$$\frac{\partial {TP}_{2}\left(e,T\right)}{\partial \mathrm{T}}=\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2})}{{T}^{2}{(\mathrm{F}(T))}^{2}}+\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4})}{{T}^{3}{(\mathrm{F}(T))}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{{T}^{2}\left(\mathrm{F}\left(T\right)\right)}-\frac{{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{X}}_{7}}{\left(\mathrm{E}\left(T\right)\right){\left(\mathrm{F}\left(T\right)\right)}^{2}}+\frac{2{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}\left(\mathrm{E}\left(T\right)\right){\left(\mathrm{F}\left(T\right)\right)}^{3}}+\frac{\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}{\left(\mathrm{E}\left(T\right)\right)}^{2}{\left(\mathrm{F}\left(T\right)\right)}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{9}}{T{\left(\mathrm{F}\left(T\right)\right)}^{2}}-\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{12}+\frac{{\mathrm{X}}_{9}}{\mathrm{F}\left(T\right)}\right)+\frac{\mathrm{O}+{\mathrm{aX}}_{13}+{e}^{4}\left(\mathrm{G}+{\mathrm{bX}}_{13}\right)}{{T}^{2}}.$$
(87)

The second derivative of \({TP}_{2}\) concerning \(T\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{2}\left(e,T\right)}{\partial {T}^{2}}=\frac{2(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2})}{{T}^{4}{(\mathrm{F}(T))}^{3}}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2}\right)}{{T}^{3}{\left(F\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{{T}^{5}{\left(F\left(T\right)\right)}^{3}}-\frac{4\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{{T}^{4}{\left(F\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{{T}^{3}\left(F\left(T\right)\right)}-\frac{4{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{7}}{{T}^{2}\left(E\left(T\right)\right){\left(F\left(T\right)\right)}^{3}}-\frac{2\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{X}}_{7}}{{T}^{2}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}+\frac{6{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}\left(E\left(T\right)\right){\left(F\left(T\right)\right)}^{4}}+\frac{4\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{3}}-\frac{4{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}E\left(T\right){\left(F\left(T\right)\right)}^{3}}+\frac{2{\mathrm{b}}^{2}{e}^{6}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}{\mathrm{y}}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(E\left(T\right)\right)}^{3}{\left(F\left(T\right)\right)}^{2}}-\frac{2\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}{\mathrm{X}}_{9}}{{T}^{3}{\left(\mathrm{F}\left(T\right)\right)}^{3}}-\frac{2\left(\mathrm{O}+{\mathrm{aX}}_{13}+{e}^{4}\left(\mathrm{G}+{\mathrm{bX}}_{13}\right)\right)}{{T}^{3}}\le 0.$$
(88)

Due to the complexity of terms in second-order derivatives, the concavity of the total profit function is proved in the section of the numerical experiment.

To satisfy the sufficient condition of concavity for Subcase 1.2, the determinant of the corresponding Hessian matrix must be positive which is formulated as follows.

$${{The \; determinant\; of}} \,H\left({TP}_{2}\left(e,T\right)\right)=\left|\begin{array}{cc}\frac{{\partial }^{2}{TP}_{2}\left(e,T\right)}{{e}^{2}}& \frac{{\partial }^{2}{TP}_{2}\left(e,T\right)}{\partial e\partial T}\\ \frac{{\partial }^{2}{TP}_{2}\left(e,T\right)}{\partial T\partial e}& \frac{{\partial }^{2}{TP}_{2}\left(e,T\right)}{\partial {T}^{2}}\end{array}\right|\ge 0.$$
(89)

Due to the complexity of terms in the Hessian matrix, it is not convenient to prove the positivity of the determinant of the Hessian matrix. Therefore, the positivity of the Hessian matrix is proved in a numerical experiment.

Appendix 4

To satisfy the necessary conditions of concavity for Subcase 1.3, first and second-order derivatives of \({TP}_{3}\) are calculated. The second-order derivatives concerning variables should be negative.

The first derivative of \({TP}_{3}\) concerning \(e\) is obtained as follows.

$$\frac{\partial {TP}_{3}\left(e,T\right)}{\partial e}=-\frac{4{e}^{3}\mathrm{G}}{\mathrm{T}}-\frac{3\mathrm{b}{e}^{2}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{\mathrm{T}{\left(\mathrm{E}\left(\mathrm{T}\right)\right)}^{2}{\left(\mathrm{F}\left(\mathrm{T}\right)\right)}^{2}}+\frac{4\mathrm{b}{e}^{3}\left({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}\left({\mathrm{X}}_{2}+{\mathrm{X}}_{14}\right)\right)}{\mathrm{F}\left(T\right)}+\frac{4\mathrm{b}{e}^{3}\left({\mathrm{X}}_{3}+{\mathrm{vI}}_{\mathrm{e}}\left(-{\mathrm{X}}_{4}+{\mathrm{X}}_{15}\right)\right)}{T\mathrm{F}\left(T\right)}+4\mathrm{b}{e}^{3}{\mathrm{X}}_{16}+8\mathrm{b}{e}^{3}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left(\frac{{\mathrm{X}}_{6}-T{\mathrm{X}}_{7}}{E\left(T\right){\left(F\left(T\right)\right)}^{2}}-T{\mathrm{X}}_{17}+{\mathrm{W}}_{2}{\mathrm{X}}_{17}\right)-4\mathrm{b}{e}^{3}T\left({\mathrm{X}}_{18}+\frac{{\mathrm{X}}_{9}+{\mathrm{X}}_{19}}{\mathrm{F}\left(T\right)}\right).$$
(90)

The second derivative of \({TP}_{3}\) concerning \(e\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{3}\left(e,T\right)}{\partial {e}^{2}}=\frac{18{\mathrm{b}}^{2}{e}^{4}{(\mathrm{a}+\mathrm{b}{e}^{4})}^{2}{\mathrm{y}}^{2}(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}})({\mathrm{X}}_{6}-T{\mathrm{X}}_{7})}{{T}^{2}{(E(T))}^{3}{(F(T))}^{2}}+\frac{12\mathrm{b}{e}^{2}({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}({\mathrm{X}}_{2}+{\mathrm{X}}_{14}))}{F(T)}+\frac{12\mathrm{b}{e}^{2}({\mathrm{X}}_{3}+{\mathrm{vI}}_{\mathrm{e}}(-{\mathrm{X}}_{4}+{\mathrm{X}}_{15}))}{TF(T)}+12\mathrm{b}{e}^{2}{\mathrm{X}}_{16}+32{\mathrm{b}}^{2}{e}^{6}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left(\frac{{\mathrm{X}}_{6}-T{\mathrm{X}}_{7}}{E\left(T\right){\left(F\left(T\right)\right)}^{2}}-T{\mathrm{X}}_{17}+{\mathrm{w}}_{2}{\mathrm{X}}_{17}\right)+24\mathrm{b}{e}^{2}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left(\frac{{\mathrm{X}}_{6}-{\mathrm{TX}}_{7}}{E\left(T\right){\left(F\left(T\right)\right)}^{2}}-T{\mathrm{X}}_{17}+{\mathrm{w}}_{2}{\mathrm{X}}_{17}\right)-12\mathrm{b}{e}^{2}T\left({\mathrm{X}}_{18}+\frac{{\mathrm{X}}_{9}+{\mathrm{X}}_{19}}{F\left(T\right)}\right)-\frac{12{e}^{2}\mathrm{G}}{T}-\frac{48{\mathrm{b}}^{2}{e}^{5}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}-\frac{6\mathrm{b}e{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}\le 0.$$
(91)

The first derivative of \({TP}_{3}\) concerning \(T\) is obtained as follows.

$$\frac{\partial {TP}_{3}\left(e,T\right)}{\partial T}=\frac{{e}^{4}\mathrm{G}+\mathrm{O}}{{T}^{2}}+\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}({\mathrm{X}}_{2}+{\mathrm{X}}_{14}))}{{T}^{2}{(F(T))}^{2}}+\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{3}+{\mathrm{vI}}_{\mathrm{e}}(-{\mathrm{X}}_{4}+{\mathrm{X}}_{15}))}{{T}^{3}{(F(T))}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}+{\mathrm{vI}}_{\mathrm{e}}\left(-{\mathrm{X}}_{4}+{\mathrm{X}}_{15}\right)\right)}{{T}^{2}F\left(T\right)}+{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left(-\frac{{\mathrm{X}}_{7}}{E\left(T\right){\left(F\left(T\right)\right)}^{2}}+\frac{2{\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}E\left(T\right){\left(F\left(T\right)\right)}^{3}}+\frac{\mathrm{b}{e}^{3}\mathrm{y}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}-{\mathrm{X}}_{17}\right)-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{9}+{\mathrm{X}}_{19}\right)}{T{\left(F\left(T\right)\right)}^{2}}-\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{18}+\frac{{\mathrm{X}}_{9}+{\mathrm{X}}_{19}}{F\left(T\right)}\right).$$
(92)

The second derivative of \({TP}_{3}\) concerning \(T\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{3}\left(e,T\right)}{\partial {T}^{2}}=-\frac{2\left({e}^{4}\mathrm{G}+\mathrm{O}\right)}{{T}^{3}}+{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left(-\frac{4{\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{7}}{{T}^{2}E\left(T\right){\left(F\left(T\right)\right)}^{3}}-\frac{2\mathrm{b}{e}^{3}{\mathrm{yX}}_{7}}{{T}^{2}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}+\frac{6{\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}E\left(T\right){\left(F\left(T\right)\right)}^{4}}+\frac{4\mathrm{b}{e}^{3}{\mathrm{yq}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{3}}-\frac{4{\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}E\left(T\right){\left(F\left(T\right)\right)}^{3}}+\frac{2{\mathrm{b}}^{2}{e}^{6}{\mathrm{y}}^{2}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(E\left(T\right)\right)}^{3}{\left(F\left(T\right)\right)}^{2}}-\frac{2\mathrm{b}{e}^{3}\mathrm{y}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}\right)+\frac{2\left(\mathrm{a}+{\mathrm{be}}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}\left({\mathrm{X}}_{2}+{\mathrm{X}}_{14}\right)\right)}{{\mathrm{T}}^{4}{\left(\mathrm{F}\left(\mathrm{T}\right)\right)}^{3}}-\frac{2\left(\mathrm{a}+{\mathrm{be}}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}\left({\mathrm{X}}_{2}+{\mathrm{X}}_{14}\right)\right)}{{T}^{3}{\left(F\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+{\mathrm{be}}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{3}+{\mathrm{vI}}_{\mathrm{e}}\left(-{\mathrm{X}}_{4}+{\mathrm{X}}_{15}\right)\right)}{{T}^{5}{\left(F\left(T\right)\right)}^{3}}-\frac{4\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{3}+{\mathrm{vI}}_{\mathrm{e}}\left(-{\mathrm{X}}_{4}+{\mathrm{X}}_{15}\right)\right)}{{T}^{4}{\left(F\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}+{\mathrm{vI}}_{\mathrm{e}}\left(-{\mathrm{X}}_{4}+{\mathrm{X}}_{15}\right)\right)}{{T}^{3}F\left(T\right)}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{9}+{\mathrm{X}}_{19}\right)}{{T}^{3}{\left(F\left(T\right)\right)}^{3}}\le 0.$$
(93)

Due to the complexity of terms in second-order derivatives, the concavity of the total profit function is proved in the section of the numerical experiment.

To satisfy the sufficient condition of concavity for Subcase 1.3, the determinant of the corresponding Hessian matrix must be positive which is formulated as follows.

$${{The \;determinant \;of}}\, H\left({TP}_{3}\left(e,T\right)\right)=\left|\begin{array}{cc}\frac{{\partial }^{2}{TP}_{3}\left(e,T\right)}{{e}^{2}}& \frac{{\partial }^{2}{TP}_{3}\left(e,T\right)}{\partial e\partial T}\\ \frac{{\partial }^{2}{TP}_{3}\left(e,T\right)}{\partial T\partial e}& \frac{{\partial }^{2}{TP}_{3}\left(e,T\right)}{\partial {T}^{2}}\end{array}\right|\ge 0.$$
(94)

Due to the complexity of terms in the Hessian matrix, it is not convenient to prove the positivity of the determinant of the Hessian matrix. Therefore, the positivity of the Hessian matrix is proved in a numerical experiment.

Appendix 5

To satisfy the necessary conditions of concavity for Subcase 2.1, first and second-order derivatives of \({TP}_{4}\) are calculated. The second-order derivatives concerning variables should be negative.

The first derivative of \({TP}_{4}\) concerning \(e\) is obtained as follows.

$$\frac{\partial {TP}_{4}\left(e,T\right)}{\partial \mathrm{e}}=\frac{4\mathrm{b}{e}^{3}({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2})}{F(T)}+\frac{4\mathrm{b}{e}^{3}({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4})}{T(F(T))}+4\mathrm{b}{e}^{3}{\mathrm{X}}_{5}-\frac{3\mathrm{b}{e}^{2}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}+\frac{8\mathrm{b}{e}^{3}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{\left(E\left(T\right)\right){\left(F\left(T\right)\right)}^{2}}-4\mathrm{b}{e}^{3}\mathrm{T}\left({\mathrm{X}}_{8}+\frac{{\mathrm{X}}_{9}}{F\left(T\right)}\right)-\frac{4{e}^{3}\left(\mathrm{G}+{\mathrm{bX}}_{20}\right)}{T}.$$
(95)

The second derivative of \({TP}_{4}\) concerning \(e\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{4}\left(e,T\right)}{\partial {e}^{2}}=\frac{12\mathrm{b}{e}^{2}({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2})}{F(T)}+\frac{12\mathrm{b}{e}^{2}({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4})}{TF(T)}+12\mathrm{b}{e}^{2}{\mathrm{X}}_{5}+\frac{18{\mathrm{b}}^{2}{e}^{4}{(\mathrm{a}+\mathrm{b}{e}^{4})}^{2}{\mathrm{y}}^{2}(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}})({\mathrm{X}}_{6}-T{\mathrm{X}}_{7})}{{T}^{2}{(E(T))}^{3}{(F(T))}^{2}}+\frac{\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{E(T)(F{(T))}^{2}}\left(32{\mathrm{b}}^{2}{e}^{6}+24\mathrm{b}{e}^{2}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\right)-\frac{\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(E\left(T\right)\right)}^{2}(F{(T))}^{2}}\left(48{\mathrm{b}}^{2}{e}^{5}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)+6\mathrm{b}e{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\right)-12\mathrm{b}{e}^{2}T\left({\mathrm{X}}_{8}+\frac{{\mathrm{X}}_{9}}{F\left(T\right)}\right)-\frac{12{e}^{2}\left(\mathrm{G}+{\mathrm{bX}}_{20}\right)}{T}\le 0.$$
(96)

The first derivative of \({TP}_{4}\) concerning \(T\) is obtained as follows.

$$\frac{\partial {TP}_{4}\left(e,T\right)}{\partial T}=\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2})}{{T}^{2}{(\mathrm{F}(T))}^{2}}+\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4})}{{T}^{3}{(F(T))}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4}\right)}{{T}^{2}\left(F\left(T\right)\right)}-\frac{{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{X}}_{7}}{\left(E\left(T\right)\right){\left(F\left(T\right)\right)}^{2}}+\frac{2{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}\left(E\left(T\right)\right){\left(F\left(T\right)\right)}^{3}}+\frac{{\mathrm{be}}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{9}}{T{\left(F\left(T\right)\right)}^{2}}-\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{8}+\frac{{\mathrm{X}}_{9}}{F\left(T\right)}\right)+\frac{\mathrm{O}+{\mathrm{aX}}_{20}+{e}^{4}\left(\mathrm{G}+{\mathrm{bX}}_{20}\right)}{{T}^{2}}.$$
(97)

The second derivative of \({TP}_{4}\) concerning \(T\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{4}\left(e,T\right)}{\partial {T}^{2}}=\frac{2(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2})}{{T}^{4}{(F(T))}^{3}}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{1}+{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{2}\right)}{{T}^{3}{\left(F\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4}\right)}{{T}^{5}{\left(F\left(T\right)\right)}^{3}}-\frac{4\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4}\right)}{{T}^{4}{\left(F\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}-{\mathrm{CI}}_{\mathrm{P}}{\mathrm{X}}_{4}\right)}{{T}^{3}\left(F\left(T\right)\right)}-\frac{4{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{7}}{{T}^{2}\left(E\left(T\right)\right){\left(F\left(T\right)\right)}^{3}}-\frac{2\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{X}}_{7}}{{T}^{2}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}+\frac{6{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}\left(E\left(T\right)\right){\left(F\left(T\right)\right)}^{4}}+\frac{4\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{3}}-\frac{4{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}E\left(T\right){\left(F\left(T\right)\right)}^{3}}+\frac{2{\mathrm{b}}^{2}{e}^{6}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}{\mathrm{y}}^{2}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(E\left(T\right)\right)}^{3}{\left(F\left(T\right)\right)}^{2}}-\frac{2\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{CI}}_{\mathrm{P}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}{\mathrm{X}}_{9}}{{T}^{3}{\left(F\left(T\right)\right)}^{3}}-\frac{2\left(\mathrm{O}+{\mathrm{aX}}_{20}+{e}^{4}\left(\mathrm{G}+{\mathrm{bX}}_{20}\right)\right)}{{T}^{3}}\le 0.$$
(98)

Due to the complexity of terms in second-order derivatives, the concavity of the total profit function is proved in the section of the numerical experiment.

To satisfy the sufficient condition of concavity for Subcase 2.1, the determinant of the corresponding Hessian matrix must be positive which is formulated as follows.

$${ {The \; determinant \;of}} H\left({TP}_{4}\left(e,T\right)\right)=\left|\begin{array}{cc}\frac{{\partial }^{2}{TP}_{4}\left(e,T\right)}{{e}^{2}}& \frac{{\partial }^{2}{TP}_{4}\left(e,T\right)}{\partial e\partial T}\\ \frac{{\partial }^{2}{TP}_{4}\left(e,T\right)}{\partial T\partial e}& \frac{{\partial }^{2}{TP}_{4}\left(e,T\right)}{\partial {T}^{2}}\end{array}\right|\ge 0.$$
(99)

Due to the complexity of terms in the Hessian matrix, it is not convenient to prove the positivity of the determinant of the Hessian matrix. Therefore, the positivity of the Hessian matrix is proved in a numerical experiment.

Appendix 6

To satisfy the necessary conditions of concavity for Subcase 2.2, first and second-order derivatives of \({TP}_{5}\) are calculated. The second-order derivatives concerning variables should be negative.

The first derivative of \({TP}_{5}\) concerning \(e\) is obtained as follows.

$$\frac{\partial {TP}_{5}\left(e,T\right)}{\partial e}=-\frac{4{e}^{3}\mathrm{G}}{T}+\frac{4\mathrm{b}{e}^{3}\left({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2}\right)}{F\left(T\right)}+\frac{4\mathrm{b}{e}^{3}\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{TF\left(T\right)}-\frac{3\mathrm{b}{e}^{2}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}+\frac{8\mathrm{b}{e}^{3}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{E\left(T\right){\left(F\left(T\right)\right)}^{2}}+4\mathrm{b}{e}^{3}{\mathrm{X}}_{11}-4\mathrm{b}{e}^{3}\mathrm{T}\left(\frac{{\mathrm{X}}_{9}}{F\left(T\right)}+{\mathrm{X}}_{12}\right).$$
(100)

The second derivative of \({TP}_{5}\) concerning \(e\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{5}\left(e,T\right)}{\partial {e}^{2}}=-\frac{12{e}^{2}\mathrm{G}}{T}+\frac{12\mathrm{b}{e}^{2}\left({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2}\right)}{F\left(T\right)}+\frac{12\mathrm{b}{e}^{2}\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{TF\left(T\right)}+\frac{18{\mathrm{b}}^{2}{e}^{4}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}{\mathrm{y}}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}{\left(E\left(T\right)\right)}^{3}{\left(F\left(T\right)\right)}^{2}}-\frac{48{\mathrm{b}}^{2}{e}^{5}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}-\frac{6\mathrm{b}e{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{T{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}+\frac{32{\mathrm{b}}^{2}{e}^{6}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{E\left(T\right){\left(F\left(T\right)\right)}^{2}}+\frac{24\mathrm{b}{e}^{2}\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{E\left(T\right){\left(F\left(T\right)\right)}^{2}}+12\mathrm{b}{e}^{2}{\mathrm{X}}_{11}-12\mathrm{b}{e}^{2}\mathrm{T}\left(\frac{{\mathrm{X}}_{9}}{F\left(T\right)}+{\mathrm{X}}_{12}\right)\le 0.$$
(101)

The first derivative of \({TP}_{5}\) concerning \(T\) is obtained as follows.

$$\frac{\partial {TP}_{5}\left(e,T\right)}{\partial T}=\frac{{e}^{4}\mathrm{G}+\mathrm{O}}{{T}^{2}}+\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2})}{{T}^{2}{(F(T))}^{2}}+\frac{(\mathrm{a}+\mathrm{b}{e}^{4}){\mathrm{q}}_{1}{\mathrm{w}}_{1}({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4})}{{T}^{3}{(F(T))}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{{T}^{2}F\left(T\right)}-\frac{{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{X}}_{7}}{E\left(T\right){\left(F\left(T\right)\right)}^{2}}+\frac{2{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}E\left(T\right){\left(F\left(T\right)\right)}^{3}}+\frac{\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{2}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}-\frac{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{9}}{T{\left(F\left(T\right)\right)}^{2}}-\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left(\frac{{\mathrm{X}}_{9}}{\mathrm{F}\left(\mathrm{T}\right)}+{\mathrm{X}}_{12}\right).$$
(102)

The second derivative of \({TP}_{5}\) concerning \(T\) is obtained as follows.

$$\frac{{\partial }^{2}{TP}_{5}\left(e,T\right)}{\partial {T}^{2}}=-\frac{2\left({e}^{4}\mathrm{G}+\mathrm{O}\right)}{{T}^{3}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2}\right)}{{T}^{4}{\left(F\left(T\right)\right)}^{3}}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{1}+{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{2}\right)}{{T}^{3}{\left(F\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{{T}^{5}{\left(F\left(T\right)\right)}^{3}}-\frac{4\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{{T}^{4}{\left(F\left(T\right)\right)}^{2}}+\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)\left({\mathrm{X}}_{3}-{\mathrm{vI}}_{\mathrm{e}}{\mathrm{X}}_{4}\right)}{{T}^{3}F\left(T\right)}-\frac{4{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}{\mathrm{X}}_{7}}{{T}^{2}E\left(T\right){\left(F\left(T\right)\right)}^{3}}-\frac{2\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{X}}_{7}}{{T}^{2}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}+\frac{6{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}E\left(T\right){\left(F\left(T\right)\right)}^{4}}+\frac{4\mathrm{b}{e}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{3}}-\frac{4{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{q}}_{1}{\mathrm{w}}_{1}\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}E\left(T\right){\left(F\left(T\right)\right)}^{3}}+\frac{2{\mathrm{b}}^{2}{e}^{6}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}{\mathrm{y}}^{2}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{4}{\left(E\left(T\right)\right)}^{3}{\left(F\left(T\right)\right)}^{2}}-\frac{2{\mathrm{be}}^{3}{\left(\mathrm{a}+\mathrm{b}{e}^{4}\right)}^{2}\mathrm{y}\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right)\left({\mathrm{X}}_{6}-T{\mathrm{X}}_{7}\right)}{{T}^{3}{\left(E\left(T\right)\right)}^{2}{\left(F\left(T\right)\right)}^{2}}-\frac{2\left(\mathrm{a}+\mathrm{b}{e}^{4}\right){\mathrm{q}}_{1}^{2}{\mathrm{w}}_{1}^{2}{\mathrm{X}}_{9}}{{T}^{3}{\left(F\left(T\right)\right)}^{3}}\le 0.$$
(103)

Due to the complexity of terms in second-order derivatives, the concavity of the total profit function is proved in the section of the numerical experiment.

To satisfy the sufficient condition of concavity for Subcase 2.2, the determinant of the corresponding Hessian matrix must be positive which is formulated as follows.

$${{The \;determinant \;of}} H\left({TP}_{5}\left(e,T\right)\right)=\left|\begin{array}{cc}\frac{{\partial }^{2}{TP}_{5}\left(e,T\right)}{{e}^{2}}& \frac{{\partial }^{2}{TP}_{5}\left(e,T\right)}{\partial e\partial T}\\ \frac{{\partial }^{2}{TP}_{5}\left(e,T\right)}{\partial T\partial e}& \frac{{\partial }^{2}{TP}_{5}\left(e,T\right)}{\partial {T}^{2}}\end{array}\right|\ge 0.$$
(104)

Due to the complexity of terms in the Hessian matrix, it is not convenient to prove the positivity of the determinant of the Hessian matrix. Therefore, the positivity of the Hessian matrix is proved in a numerical experiment.

Appendix 7

Expressions of \({\mathrm{G}}_{1}, {\mathrm{G}}_{2},\) and \({\mathrm{G}}_{3}\) which are required for constructing the total profit of the base model for Subcases 1.1 and 2.1are illustrated as follows.

$${\mathrm{G}}_{1}=\left(\mathrm{O}-\mu {\mathrm{I}}_{\mathrm{e}}\frac{{\mathrm{DS}}^{2}}{2}+\frac{{\mathrm{CI}}_{\mathrm{p}}{\mathrm{DS}}^{2}}{2}\right)$$
(105)
$${\mathrm{G}}_{2}=\left(\frac{\mathrm{hD}}{2}+\frac{(\mathrm{h}{+{\mathrm{CI}}_{\mathrm{P}})\mathrm{D}}^{2}}{{\mathrm{x}}_{0}{\left(\left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)\right)}^{2}}\left[\left(1-\theta \right){\mathrm{q}}_{1}+\theta \left(1-{\mathrm{q}}_{2}\right)\right]+\frac{\mathrm{h}\theta {\mathrm{Dq}}_{2}}{2\left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)}+\frac{{\mathrm{CI}}_{\mathrm{p}}\mathrm{D}}{2}\right)$$
(106)
$${\mathrm{G}}_{3}=\frac{\mathrm{D}}{(1-\theta )(1-{\mathrm{q}}_{1})}\left\{\upmu \left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)+\mathrm{v}\left[\theta \left(1-{\mathrm{q}}_{2}\right)+\left(1-\theta \right){\mathrm{q}}_{1}+\theta {\mathrm{q}}_{2}\right]-\mathrm{C}-\mathrm{d}-{\mathrm{C}}_{1}\left(1-\uptheta \right){\mathrm{q}}_{1}-{\mathrm{C}}_{2}\uptheta {\mathrm{q}}_{2}+{\mathrm{CI}}_{\mathrm{P}}\mathrm{S}\left(\left(1-\theta \right){\mathrm{q}}_{1}+\theta \left(1-{\mathrm{q}}_{2}\right)\right)\right\}+{\mathrm{CI}}_{\mathrm{p}}\mathrm{DS}$$
(107)

Appendix 8

Expressions of \({\mathrm{G}}_{4}, {\mathrm{G}}_{5},\) and \({\mathrm{G}}_{6}\) which are required for constructing the total profit of the base model for Subcases 1.2 and 2.2are illustrated as follows.

$${\mathrm{G}}_{4}=\mathrm{O}$$
(108)
$${\mathrm{G}}_{5}=\left(\frac{\mathrm{hD}}{2}+\frac{(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}){\mathrm{D}}^{2}}{{\mathrm{x}}_{0}{\left(\left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)\right)}^{2}}\left[\left(1-\theta \right){\mathrm{q}}_{1}+\theta \left(1-{\mathrm{q}}_{2}\right)\right]+\frac{\mathrm{h}\theta {\mathrm{Dq}}_{2}}{2\left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)}+\frac{\mu {\mathrm{I}}_{\mathrm{e}}\mathrm{D}}{2}\right)$$
(109)
$${\mathrm{G}}_{6}=\frac{\mathrm{D}}{(1-\theta )(1-{\mathrm{q}}_{1})}\left\{\mu \left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)+\mathrm{v}\left[\theta \left(1-{\mathrm{q}}_{2}\right)+\left(1-\theta \right){\mathrm{q}}_{1}+\theta {\mathrm{q}}_{2}\right]-\mathrm{C}-\mathrm{d}-{\mathrm{C}}_{1}\left(1-\theta \right){\mathrm{q}}_{1}-{\mathrm{C}}_{2}\theta {\mathrm{q}}_{2}+{\mathrm{vI}}_{\mathrm{e}}\mathrm{S}\left(\left(1-\theta \right){\mathrm{q}}_{1}+\theta \left(1-{\mathrm{q}}_{2}\right)\right)\right\}+\mu {\mathrm{I}}_{\mathrm{e}}\mathrm{DS}$$
(110)

Appendix 9

Expressions of \({\mathrm{G}}_{7}, {\mathrm{G}}_{8},\) and \({\mathrm{G}}_{9}\) which are required for constructing the total profit of the base model for Subcase 1.3 are illustrated as follows.

$${\mathrm{G}}_{7}=\mathrm{O}$$
(111)
$${\mathrm{G}}_{8}=\left(\frac{\mathrm{hD}}{2}+\frac{\left(\mathrm{h}+{\mathrm{vI}}_{\mathrm{e}}\right){\mathrm{D}}^{2}}{{\mathrm{x}}_{0}{\left(\left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)\right)}^{2}}\left[\left(1-\theta \right){\mathrm{q}}_{1}+\theta \left(1-{\mathrm{q}}_{2}\right)\right]+\frac{{\mathrm{vI}}_{\mathrm{e}}{\mathrm{D}}^{2}\theta {\mathrm{q}}_{2}}{{\mathrm{x}}_{0}{\left(\left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)\right)}^{2}}+\frac{{\mathrm{vI}}_{\mathrm{e}}\theta {\mathrm{Dq}}_{2}}{\left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)}+\frac{\mathrm{h}\theta {\mathrm{Dq}}_{2}}{2\left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)}+\frac{\mu {\mathrm{I}}_{\mathrm{e}}\mathrm{D}}{2}\right)$$
(112)
$${\mathrm{G}}_{9}=\frac{\mathrm{D}}{(1-\theta )(1-{\mathrm{q}}_{1})}\left\{\mu \left(1-\theta \right)\left(1-{\mathrm{q}}_{1}\right)+\mathrm{v}\left[\theta \left(1-{\mathrm{q}}_{2}\right)+\left(1-\theta \right){\mathrm{q}}_{1}+\theta {\mathrm{q}}_{2}\right]-\mathrm{C}-\mathrm{d}-{\mathrm{C}}_{1}\left(1-\theta \right){\mathrm{q}}_{1}-{\mathrm{C}}_{2}\theta {\mathrm{q}}_{2}+{\mathrm{vI}}_{\mathrm{e}}\mathrm{S}\left(\left(1-\theta \right){\mathrm{q}}_{1}+\theta \left(1-{\mathrm{q}}_{2}\right)\right)+{\mathrm{vI}}_{\mathrm{e}}\theta {\mathrm{q}}_{2}\mathrm{S}\right\}$$
(113)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S., Gholamian, M.R. & Sepehri, A. An inventory model for imperfect quality items considering learning effects and partial trade credit policy. OPSEARCH 60, 276–325 (2023). https://doi.org/10.1007/s12597-022-00602-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-022-00602-3

Keywords

Navigation