Skip to main content
Log in

On a class of hyper-Poisson and alternative hyper-Poisson distributions

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Here we propose a class of hyper-Poisson and alternative hyper-Poisson distributions and study some of its important aspects by deriving expressions for its probability mass function, mean and variance and obtain conditions under which the distribution becomes under-dispersed or over-dispersed. Certain recurrence relations for probabilities, raw moments and factorial moments are also developed. Further, the estimation of the parameters of this class of hyper-Poisson distributions is attempted by various methods of estimation and shown that this new class of distribution gives better fit to certain real life data sets compared to the existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Ahmad, M.: A short note on Conway-Maxwell-hyper Poisson distribution. Pak. J. Stat. 23, 135–137 (2007)

    Google Scholar 

  3. Bardwell, G.E., Crow, E.L.: A two parameter family of hyper-Poisson distributions. J. Am. Stat. Assoc 59, 133–141 (1964)

    Article  Google Scholar 

  4. Crow, E.L., Bardwell, G.E.: Estimation of the parameters of the hyper-Poisson distributions. In: Patil, G.P. (ed) Classical and Contagious Discrete Distributions, pp. 127–140. Pergamon, Oxford (1965)

    Google Scholar 

  5. Hand, D.J., Daly, F., Lunn, A.D., Mc Conway, K.J., Ostrowski, E.: A Hand Book of Small Data Sets. Chapman and Hall, London (1994)

    Book  Google Scholar 

  6. Kemp, C.D., Kemp, A.W.: Some properties of the Hermite distribution. Biomet-rika 52, 381–394 (1965)

    Google Scholar 

  7. Kemp, C.D.: q-analogues of the hyper-Poisson distribution. J. Stat. Plan. Infer. 101, 179–183 (2002)

    Article  Google Scholar 

  8. Kumar, C.S., Nair, B.U.: A Modified version of hyper-Poisson distribution and its applications. J. Stat. Appl. 6, 23–34 (2011)

    Google Scholar 

  9. Kumar, C.S., Nair, B.U.: An alternative hyper-Poisson distribution. Statistica 3, 357–369 (2012)

    Google Scholar 

  10. Kumar, C.S., Nair, B.U.: Modified alternative hyper-Poisson distribution. In: Kumar, C.S., Chacko, M., Sathar, E.I.A. (eds) Collection of Recent Statistical Methods and Applications, pp. 97–109. Department of Statistics, University of Kerala publication, Trivandrum (2013). [ISBN: ]

    Google Scholar 

  11. Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, New York (2008)

    Book  Google Scholar 

  12. Morgan, M.E., Macleod, P., Anderson, E.O., Bliss, C.I.: A sequential procedure for grading milk by microscopic counts, Storrs Agricultural. Exponential Stat. Bull. 276 (1951)

  13. Nisida, T.: On the multiple exponential channel queuing system with hyper-Poisson arrivals. J. Oper. Res. Soc. 5, 57–66 (1962)

    Google Scholar 

  14. Roohi, A., Ahmad, M.: Estimation of the parameter of hyper-Poisson distribution using negative moments. Pak. J. Stat. 19, 99–105 (2003a)

    Google Scholar 

  15. Roohi, A., Ahmad, M.: Inverse ascending factorial moments of the hyper-Poisson probability distribution. Pak. J. Stat. 19, 273–280 (2003b)

    Google Scholar 

  16. Staff, P.J.: The displaced Poisson distribution. Aust. J. Stat. 6, 12–20 (1964)

    Article  Google Scholar 

  17. Suhasini, A.V.S., Rao, K.S., Reddy, P.R.S.: On parallel and series non-homoge-neous bulk arrival queuing model. Opsearch (available on line) (2013)

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the Managing Editor and anonymous referees for their valuable comments on an earlier version of this paper which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Satheesh Kumar.

Appendix A

Appendix A

From Eq. 7 we have the first raw moment \(\mu _{1}\left (\lambda _{0}^{*}\right )= \mu _{1}(1,\lambda )\) is

$$\begin{array}{@{}rcl@{}} \mu_{1} (\lambda_{0}^{*} )&=&\lambda^{-1} \Lambda_{1} (\theta_{1} +2 \theta_{2} )\notag\\ &=&\frac{1}{\lambda}\frac{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}{\phi(1;\lambda;\theta_{1}+\theta_{2}+\alpha)}(\theta_{1}+2\theta_{2}), \end{array} $$
(32)

by applying Eq. 9. Now by using Eq. 32, \(\mu _{1}\left (\lambda _{1}^{*}\right )= \mu _{1}(2, \lambda +1)\) can be written as

$$\begin{array}{@{}rcl@{}} \mu_{1} (\lambda_{1}^{*} )& =&\frac{2}{\lambda+1}\frac{\phi(3;\lambda+2;\theta_{1}+\theta_{2}+\alpha)}{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}(\theta_{1}+2\theta_{2})\notag\\ &=&\frac{2}{\lambda+1}\frac{\Lambda_{2}}{\Lambda_{1}}\delta(1). \end{array} $$
(33)

Put r = 1 in Eq. 15 to get the following.

$$\begin{array}{@{}rcl@{}} \mu_{2} \left(\lambda_{0}^{*} \right)&=&\frac{1}{\lambda} \Lambda_{1}\left[(\theta_{1} +2 \theta_{2})\mu_{1}\left(\lambda_{1}^{*}\right)+\left(\theta_{1} +2^{2} \theta_{2}\right)\mu_{0}\left(\lambda_{1}^{*}\right) \right]\notag\\ &=&\frac{1}{\lambda}\frac{2}{\lambda+1}\Lambda_{2}\delta^{2}(1)+\frac{1}{\lambda}\Lambda_{1}\delta(2), \end{array} $$
(34)

in the light of Eq. 33 and

$$ \mu_{0}\left(\lambda_{1}^{*}\right)=1, $$
(35)

by definition. Equations 9 and 34 leads to the following.

$$\begin{array}{@{}rcl@{}} \mu_{2} \left(\lambda_{0}^{*} \right)&=&\frac{1}{\lambda}\frac{2}{(\lambda+1)}\frac{\phi(3;\lambda+2;\theta_{1}+\theta_{2}+\alpha)}{\phi(1;\lambda;\theta_{1}+\theta_{2}+\alpha)}\delta^{2} (1)\notag\\ &&+\frac{1}{\lambda}\frac{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}{\phi(1;\lambda;\theta_{1}+\theta_{2}+\alpha)} \delta (2) \end{array} $$
(36)

By using Eq. 36, \( \mu _{2} \left (\lambda _{1}^{*} \right )=\mu _{2} (2, \lambda +1 ) \) can be written as

$$\begin{array}{@{}rcl@{}} \mu_{2} \left(\lambda_{1}^{*} \right)&=&\frac{2}{\lambda+1} \frac{3}{\lambda+2}\frac{\phi(4;\lambda+3;\theta_{1}+\theta_{2}+\alpha)}{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}\delta^{2}(1)\\ && + \frac{2}{\lambda+1} \frac{\phi(3;\lambda+2;\theta_{1}+\theta_{2}+\alpha)}{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}\delta (2)\notag\\ &=& \frac{2}{\lambda+1} \frac{3}{\lambda+2}\frac{\Lambda_{3}}{\Lambda_{1}}\delta^{2}(1) +\frac{2}{\lambda+1} \frac{\Lambda_{2}}{\Lambda_{1}}\delta (2) \end{array} $$
(37)

Put r = 2 in Eq. 15 to obtain

$$\begin{array}{@{}rcl@{}} \mu_{3} \left(\lambda_{0}^{*} \right) & =&\frac{1}{\lambda} \Lambda_{1}\left[(\theta_{1} +2 \theta_{2})\mu_{2}\left(\lambda_{1}^{*}\right)+2\left(\theta_{1} +2^{2} \theta_{2}\right)\mu_{1}\left(\lambda_{1}^{*}\right)\right.\\ &&\left.+ \left(\theta_{1} +2^{3} \theta_{2}\right)\mu_{0}\left(\lambda_{1}^{*}\right)\right]. \end{array} $$
(38)

On substituting (33), (35) and (37) in (38), we get

$$\begin{array}{@{}rcl@{}} \mu_{3} \left(\lambda_{0}^{*} \right)&=&\frac{1}{\lambda}\frac{2}{\lambda+1}\frac{3}{\lambda+2}\Lambda_{3}\delta^{3}(1)+3\frac{1}{\lambda}\frac{2}{\lambda+1}\Lambda_{2}\delta(1)\delta(2)+\frac{1}{\lambda}\Lambda_{1}\delta(3)\\ &=&\frac{1}{\lambda}\frac{2}{\lambda+1}\frac{3}{\lambda+2}\frac{\phi(4;\lambda+3;\theta_{1}+\theta_{2}+\alpha)}{\phi(1;\lambda;\theta_{1}+\theta_{2}+\alpha)}\delta^{3}(1)\\ &&+3\frac{1}{\lambda}\frac{2}{\lambda+1}\frac{\phi(3;\lambda;\theta_{1}+\theta_{2}+\alpha)}{\phi(1;\lambda;\theta_{1}+\theta_{2}+\alpha)}\delta(1)\delta(2)\notag\\ &&+\frac{1}{\lambda}\frac{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}{\phi(1;\lambda;\theta_{1}+\theta_{2}+\alpha)}\delta(3) \end{array} $$
(39)

in the light of Eq. 9. Next, by using (39) \( \mu _{3} \left (\lambda _{1}^{*}\right )=\mu _{3} (2, \lambda +1)\) can be written as

$$\begin{array}{@{}rcl@{}} \mu_{3} \left(\lambda_{1}^{*} \right)&=&\frac{2}{\lambda+1} \frac{3}{\lambda+2}\frac{4}{\lambda+3}\frac{\phi(5;\lambda+4;\theta_{1}+\theta_{2}+\alpha)}{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}\delta^{3}(1)\\ &&+3 \frac{2}{\lambda+1}\frac{3}{\lambda+2} \frac{\phi(4;\lambda+3;\theta_{1}+\theta_{2}+\alpha)}{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}\delta(2)\\ &&\times\delta(1)\\ &&+\frac{2}{\lambda+1}\frac{\phi(3;\lambda+2;\theta_{1}+\theta_{2}+\alpha)}{\phi(2;\lambda+1;\theta_{1}+\theta_{2}+\alpha)}\delta(3)\\ &=&\frac{2}{\lambda+1} \frac{3}{\lambda+2}\frac{4}{\lambda+3}\frac{\Lambda_{4}}{\Lambda_{1}}\delta^{3}(1)+ 3\frac{2}{\lambda+1}\frac{3}{\lambda+2}\frac{\Lambda_{3}}{\Lambda_{1}}\delta(2)\delta(1)\notag\\ &&+\frac{2}{\lambda+1}\frac{\Lambda_{2}}{\Lambda_{1}}\delta(3) \end{array} $$
(40)

Put r = 3 in Eq. 15 to get

$$\begin{array}{@{}rcl@{}} \mu_{4} \left(\lambda_{0}^{*} \right) &=&\frac{1}{\lambda} \Lambda_{1}\left[(\theta_{1} +2 \theta_{2})\mu_{3}\left(\lambda_{1}^{*}\right)+3\left(\theta_{1} +2^{2} \theta_{2}\right)\mu_{2}\left(\lambda_{1}^{*}\right)\right.\\ &&\left.+ 3\left(\theta_{1} +2^{3} \theta_{2}\right)\mu_{1}\left(\lambda_{1}^{*}\right)+\left(\theta_{1} +2^{4} \theta_{2}\right)\mu_{0}\left(\lambda_{1}^{*}\right)\right] \end{array} $$
(41)

On substituting (33),(35),(37) and (40) in Eq. 41

$$\begin{array}{@{}rcl@{}} \mu_{4} \left(\lambda_{0}^{*} \right)&=&{\frac{24}{(\lambda)_{4}} \delta(1)^{4} \Lambda_{4} +\frac{6}{(\lambda)_{3}} \delta^{2}(1) \delta(2) \Lambda_{3} }{+\frac{8}{(\lambda)_{2}} \Lambda_{2} \left[\delta(3) \delta(1) +3\delta^{2}(2) \right]}\\ &&+\frac{1}{\lambda } \delta(4) \Lambda_{1} \end{array} $$
(42)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, C.S., Nair, B.U. On a class of hyper-Poisson and alternative hyper-Poisson distributions. OPSEARCH 52, 86–100 (2015). https://doi.org/10.1007/s12597-013-0169-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-013-0169-7

Keywords

Navigation