Skip to main content
Log in

Markov decision processes in service facilities holding perishable inventory

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this article, we consider a single server queueing system with finite waiting space N (including one customer in service) and an inventory is attached with the maximum capacity S. The arrival of customer at the system is according to independent Poisson Processes with rate λ through a single channel. The service time is exponentially distributed with mean 1/μ and the item in stock has exponential life time with perishable rate γ(>0). When we place the order due to the demand of the customers, we assume that the lead time of procurement of item is exponentially distributed with parameter δ. Our object is to make a decision at each state of the system to operate the server by minimizing the entire service cost. The problem is modelled as a Markov decision problem by using the value iteration algorithm to obtain the minimal average cost of the service. The unique equilibrium probability distributions {p(q, i)} is also obtained by using Matrix geometric form in which the two dimensional state space contains infinite queue length and finite capacity of inventory. Numerical examples are provided to obtain the optimal average cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arivaringan, G., Elango, C., Arumugam, N.: A Continuous Review Perishable Inventory Control System at Service Facilities, pp. 19–40. Notable Publications Inc, New Jersey (2002)

    Google Scholar 

  2. Arivaringan, G., Sivakumar, B.: Inventory system with renewal demands at service facilities. In: Srinivanan, S.K., Vijayakumar, A. (eds.) Stochastic Point Processes, pp. 108–123. Notable Publishing House, New Delhi (2003)

    Google Scholar 

  3. Berman, O., Kaplan, E.H., Shevishak, D.G.: Deterministic approximations for inventory management at service facilities. IIE Trans. 25(5), 98–104 (1993)

    Article  Google Scholar 

  4. Berman, O., Kim, E.: Stochastic inventory policies for inventory management at service facilities. Stoch. Model. 15, 695–718 (1999)

    Article  Google Scholar 

  5. Berman, O., Sapna, K.P.: Optimal control of service for facilities holding inventory. Comput. Oper. Res. 28, 429–441 (2001)

    Article  Google Scholar 

  6. Elango, C.: A continuous review perishable inventory system at service facilities. Ph.D Thesis, Madurai Kamaraj University, India (2001)

  7. Chung, K.L.: Markov Chains with Stationary Transition Probabilities, 2nd edn. Springer, Berlin (1967)

    Google Scholar 

  8. Denardo, E.V., Fox, B.L.: Multi-chain Markov renewal programs. SIAM J. Appl. Math. 16, 468–487 (1968)

    Article  Google Scholar 

  9. Eungab, K.: Optimal inventory replenishment policy for a queuing system with finite waiting room capacity. Eur. J. Oper. Res. 161(1), 256–274 (2005)

    Article  Google Scholar 

  10. He, Q.-M., Neuts, M.F.: Markov chains with marked transitions. Stoch. Proc. Appl. 74, 37–52 (1998)

    Article  Google Scholar 

  11. Howard, R.A.: Dynamic Programming and Markov Processes. John Wiley and sons, Inc, New York (1960)

    Google Scholar 

  12. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  13. Mayorga, M.E., Ahn, H.-S., Shanthikumar, J.G.: Optimal control of a make - to - stock system with adjustable service rate’. Probab. Eng. Inform. Sc. 20(4), 609–634 (2006)

    Article  Google Scholar 

  14. Manuel, P., Sivakumar, B., Arivarignan, G.: A perishable inventory systems with service facilities and retail customers. Comput. Ind. Eng. 54(3), 484–501 (2007)

    Article  Google Scholar 

  15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley and Sons, Inc, New York (1994)

    Google Scholar 

  16. Tijms, H.C.: A First Course in Stochastic Models. John Wiley and Sons Ltd, England (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Satheesh Kumar.

Appendices

Appendix A

Proof of Theorem 1: To prove the first inequality, choose any stationary policy R. By the definition of (Tv)(q,i), we have for any state (q,i)∈E 1 that

$$ {\left( {Tv} \right)_{{\left( {q,i} \right)}}} \leqslant {c_{{\left( {q,i} \right)}}}(a) + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}(a){v_{{\left( {r,j} \right)}}},\quad \quad a \in A\left( {q,i} \right)} $$
(17)

where the equality sign holds for \( a = {R_{{\left( {q,i} \right)}}}(v) \). Choosing a = R (q,i) in (17) gives,

$$ {\left( {Tv} \right)_{{\left( {q,i} \right)}}} \leqslant {c_{{\left( {q,i} \right)}}}\left( {{R_{{\left( {q,i} \right)}}}} \right) + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}} \right){v_{{\left( {r,j} \right)}}},\quad \quad \left( {q,i} \right) \in {E_1}} $$
(18)

Define the lower bound

$$ m = \mathop{{min}}\limits_{{\left( {q,i} \right) \in {E_1}}} \left\{ {{{\left( {Tv} \right)}_{{\left( {q,i} \right)}}} - {v_{{\left( {q,i} \right)}}}} \right\} $$

Since \( m \leqslant {\left( {Tv} \right)_{{\left( {q,i} \right)}}} - {v_{{\left( {q,i} \right)}}} \) for all (q,i), it follows from (18) that \( m + {v_{{\left( {q,i} \right)}}} \leqslant {c_{{\left( {q,i} \right)}}}\left( {{R_{{\left( {q,i} \right)}}}} \right) + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}} \right){v_{{\left( {r,j} \right)}}}} \) for all (q,i)∈E 1 and so

$$ {c_{{\left( {q,i} \right)}}}\left( {{R_{{\left( {q,i} \right)}}}} \right) - m + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}} \right){v_{{\left( {r,j} \right)}}} \geqslant {v_{{\left( {q,i} \right)}}}} $$
(19)

By the improvement theorem, Let g and \( {v_{{(q,i)}}} \), \( (q,i) \in {E_1} \), be given numbers. Suppose that the stationary policy \( \overline R \) has the property

$$ {c_{{\left( {q,i} \right)}}}\left( {{{\overline R }_{{\left( {q,i} \right)}}}} \right) - g + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{{\overline R }_{{\left( {q,i} \right)}}}} \right){v_{{\left( {r,j} \right)}}} \leqslant {v_{{\left( {q,i} \right)}}}} $$
(20)

Then the long run average cost of policy \( \overline R \) satisfies \( {g_{{\left( {q,i} \right)}}}\left( {\overline R } \right) \leqslant g,\;\left( {q,i} \right) \in {E_1} \)

Equation (19) gives that

$$ {g_{{\left( {q,i} \right)}}}(R) \geqslant m,\quad \quad \left( {q,i} \right) \in {E_1}. $$

This inequality holds for each policy R and so \( {g^{*}} = \mathop{{min}}\nolimits_R {g_{{\left( {q,i} \right)}}}(R) \geqslant m \) proving the first inequality in (5). The proof of the last inequality in (5) is very similar.

By the definition of policy R(v)

$$ {\left( {Tv} \right)_{{\left( {q,i} \right)}}} = {c_{{\left( {q,i} \right)}}}\left( {{R_{{\left( {q,i} \right)}}}(v)} \right) + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {\left. {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}} \right)(v)} \right){v_{{\left( {r,j} \right)}}},\;\left( {q,i} \right) \in {E_1}.} $$
(21)

Define the upper bound

$$ M = \mathop{{max}}\limits_{{\left( {q,i} \right) \in {E_1}}} \left\{ {{{\left( {Tv} \right)}_{{\left( {q,i} \right)}}} - {v_{{\left( {q,i} \right)}}}} \right\}. $$

Since \( M \geqslant {\left( {Tv} \right)_{{\left( {q,i} \right)}}} - {v_{{\left( {q,i} \right)}}} \) for all \( \left( {q,i} \right) \in {E_1} \), we obtain from (21) that

$$ {c_{{\left( {q,i} \right)}}}\left( {{R_{{\left( {q,i} \right)}}}(v)} \right) - M + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}(v)} \right){v_{{\left( {r,j} \right)}}} \leqslant {v_{{\left( {q,i} \right)}}},\;\left( {q,i} \right) \in {E_1}.} $$
(22)

Hence by Eq. (20), \( {g_{{\left( {q,i} \right)}}}\left( {R(v)} \right) \leqslant M \) for all \( \left( {q,i} \right) \in {E_1} \), proving the last inequality in (5). This completes the proof.

Appendix B

Proof of Theorem 2: By the definition of policy R(n),

$$ {V_n}\left( {q,i} \right) = {c_{{\left( {q,i} \right)}}}\left( {{R_{{\left( {q,i} \right)}}}(n)} \right) + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {\left. {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}} \right)(n)} \right){V_{{n - 1}}}\left( {r,j} \right),\;\left( {q,i} \right) \in {E_1}.} $$
(23)

In the same way as (18) was obtained, we find for any policy R that

$$ {c_{{\left( {q,i} \right)}}}\left( {{R_{{\left( {q,i} \right)}}}} \right) + \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}} \right){V_{{n - 1}}}\left( {r,j} \right) \geqslant {V_n}\left( {q,i} \right),\left( {q,i} \right) \in {E_1}.} $$
(24)

Taking n = k in (23) and taking n = k + 1 and R = R(k) in (24) gives

$$ {V_{{k + 1}}}\left( {q,i} \right) - {V_k}\left( {q,i} \right) \leqslant \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {\left. {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}} \right)(k)} \right)\left\{ {{V_k}\left( {r,j} \right) - {V_{{k - 1}}}\left( {r,j} \right)} \right\}} $$
(25)

Similarly, by taking n = k + 1 in (23) and taking n = k and \( R = R\left( {k + 1} \right) \) in (24), we find

$$ {V_{{k + 1}}}\left( {q,i} \right) - {V_k}\left( {q,i} \right) \geqslant \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {\left. {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{\left( {q,i} \right)}}}} \right)\left( {k + 1} \right)} \right)\left\{ {{V_k}\left( {r,j} \right) - {V_{{k - 1}}}\left( {r,j} \right)} \right\},} $$
(26)

Since \( {V_k}\left( {r,j} \right) - {V_{{k - 1}}}\left( {r,j} \right) \leqslant {M_k} \) for all \( \left( {r,j} \right) \in {E_1} \) and \( \sum\limits_{{\left( {r,j} \right) \in {E_1}}} {\left. {p_{{\left( {q,i} \right)}}^{{\left( {r,j} \right)}}\left( {{R_{{(q,i)}}}} \right)(k)} \right) = 1,} \) it follows from (25) that \( {V_{{k + 1}}}\left( {q,i} \right) - {V_k}\left( {q,i} \right) \leqslant {M_k} \) for all \( \left( {q,i} \right) \in {E_1} \). This gives \( {M_{{k + 1}}} \leqslant {M_k} \). Similarly, we obtain from (26) that \( {m_{{k + 1}}} \geqslant {m_k} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satheesh Kumar, R., Elango, C. Markov decision processes in service facilities holding perishable inventory. OPSEARCH 49, 348–365 (2012). https://doi.org/10.1007/s12597-012-0084-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-012-0084-3

Keywords

Navigation