Skip to main content
Log in

Design of corrosion sensors by using 1D quaternary photonic crystal with defect layer

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

For the first time, corrosion sensors are designed by using 1D Quaternary photonic crystals (QPCs). These quaternary PCs have 6 periods of four material layers followed by a defect layer (of air) then again 6 periods of same four material layers combination. These 1D quaternary PC-based corrosion sensors are highly sensitive. The corrosion sensitive output spectra transmission peak shifts of first and second 1D QPCs containing defect layers are 11 and 10 nm, respectively, over the displacement range of 0.1–0.4 µm. These quaternary PC-based corrosion sensors can be used to detect corrosion in reinforced concrete structures for monitoring civil engineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Ahmad, Reinforcement corrosion in concrete structures, its monitoring and service life prediction—a review. Cement Concr. Compos. 25, 459–471 (2003)

    Article  Google Scholar 

  2. H.W. Song, V. Saraswathy, Corrosion monitoring of reinforced concrete structures—a review. Int. J. Electrochem. Sci. 2, 1–28 (2007)

    Article  Google Scholar 

  3. B. Elsener, C. Andrade, J. Gulikers, R. Polder, M. Raupach, Half-cell potential measurements—potential mapping on reinforced concrete structures. Mater. Struct. 36, 461–471 (2003)

    Article  Google Scholar 

  4. R.B. Polder, Test methods for on site measurement of resistivity of concrete—A RILEM TC-154 technical recommendation. Constr. Build. Mater. 15, 125–131 (2001)

    Article  Google Scholar 

  5. C. Andrade, J.A. Gonzalez, Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Werkst. Korros. 29, 515–519 (1978)

    Article  Google Scholar 

  6. J. Xu, W. Yao, Corrosion detection of steel in concrete by use of galvanostatic pulse technique. J. Chin. Soci. Corros. Prot. 30, 181–186 (2010)

    Google Scholar 

  7. T. Fukuyama, H. Nagai, T. Noguchi, Corrosion monitoring of reinforcing bars by electrochemical noise measurement, in Proceeding of the 4th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-4), Zurich, Switzerland, 22–24 July 2009

  8. J. Swarup, P.C. Sharma, Electrochemical techniques for the monitoring of corrosion of reinforcement in concrete structures. Bull. Electrochem. 12, 103–108 (1996)

    Google Scholar 

  9. B. Elsener, H. Wojtas, H. Bohni, Inspection and monitoring of reinforced concrete structures—electrochemical methods to detect corrosion. Insight 36, 502–506 (1994)

    Google Scholar 

  10. H. Sohn, G. Park, J.R. Wait, N.P. Limback, C.R. Farrar, Wavelet-based active sensing for delamination detection in composite structures. Smart Mater. Struct. 13, 153–160 (2004)

    Article  ADS  Google Scholar 

  11. J.H. Bungey, Ultrasonic testing to identify alkali-silica reaction in concrete. Br. J. Non-Destr. Test. 33, 227–231 (1991)

    Google Scholar 

  12. A.G. Beattie, Acoustic emission, principles and instrumentation. J.Acoustic Emiss. 2, 95–128 (1983)

    Google Scholar 

  13. M.T. Liang, P.J. Su, Detection of the corrosion damage of rebar in concrete using impact-echo method. Cem. Concr. Res. 31, 1427–1436 (2001)

    Article  ADS  Google Scholar 

  14. S. Kabir, A. Zaki, Detection and quantification of corrosion damage using ground penetrating radar (GPR). In Proc. Prog. Electromagn. Res. Symp. (PIERS). Marrakesh, Marocco, 20–23 (2011)

  15. C. Maierhofer, Nondestructive evaluation of concrete infrastructure with ground penetrating radar. J. Mater. Civil Eng. 15, 287–297 (2003)

    Article  Google Scholar 

  16. M.R.A. Hassan, M.H.A. Bakar, K. Dambul, F.R.M. Adikan, Optical-based sensors for monitoring corrosion of reinforcement rebar via an etched Cladding Bragg grating. Sensors 12, 15820–15826 (2012)

    Article  ADS  Google Scholar 

  17. Z. Zheng, X. Sun, Y. Lei, Monitoring corrosion of reinforcement in concrete structures via fiber Bragg grating sensors. Front. Mechan. Eng. 4, 316–319 (2009)

    Google Scholar 

  18. J. Gao, J. Wu, J. Li, X. Zhao, Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. NDT & E Int. 44, 202–205 (2011)

    Article  Google Scholar 

  19. K.T. Lau, Fibre-optic sensors and smart composites for concrete applications. Mag. Concr. Res. 55, 19–34 (2003)

    Article  Google Scholar 

  20. J. Geng, J. Wu, X. Zhao, Simulation of fiber Bragg grating sensor for rebar corrosion. In Proc. SPIE—Int. Soc. Opt. Eng. Weihai, China, (2009)

  21. L. Chung, I.K. Paik, Y.S. Roh, Non-destructive evaluation techniques of reinforcing steel corrosion using infrared thermography. Key Eng. Mater. 270, 1592–1597 (2004)

    Article  Google Scholar 

  22. L. Chung, I.K. Paik, S.H. Cho, Y.S. Roh, Infrared thermographic technique to measure corrosion in reinforcing bar. Key Eng. Mater. 321, 821–824 (2006)

    Article  Google Scholar 

  23. M.M. Abadla, N.A. Tabaza, W. Tabaza, N.R. Ramanujam, K.S.J. Wilson, D. Vigneswaran, S.A. Taya, Properties of ternary photonic crystal consisting of dielectric/plasma/ dielectric as a lattice period. Optik 185, 784–793 (2019)

    Article  ADS  Google Scholar 

  24. D.M. El-Amassi, S.A. Taya, D. Vigneswaran, Temperature sensor utilizing a ternary photonic crystal with a polymer layer sandwiched between Si and SiO2 layers. J.Theor. Appl. Phy. 12, 293–298 (2018)

    Article  ADS  Google Scholar 

  25. S.A. Taya, Ternary photonic crystal with left-handed material layer for refractometric application. Opto-Electron. Rev. 26, 236–241 (2018)

    Article  ADS  Google Scholar 

  26. K.M. Abohassan, H.S. Ashour, M.M. Abadla, One-dimensional ZnSe/ZnS/BK7 ternary planar photonic crystals as wide angle infrared reflectors. Results Phys. 22, 103882 (2021)

    Article  Google Scholar 

  27. R. Talebzadeh, M. Bavaghar, Tunable defect mode in one-dimensional ternary nanophotonic crystal with mirror symmetry. J. Optoelectron. Nanostruct. 2, 83–92 (2017)

    Google Scholar 

  28. D.M. El-Amassi, S.A. Taya, N.R. Ramanujam, D. Vigneswaran, R. Udaiyakumar, Extension of energy band gap in ternary photonic crystal using left-handed materials. Superlattices Microstruct. 120, 353–362 (2018)

    Article  ADS  Google Scholar 

  29. A. Banerjee, Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures. J. Electromagn. Waves Appl. 24, 1023–1032 (2010)

    Article  ADS  Google Scholar 

  30. A. Banerjee, Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures. Progress Electromagn. Res. Lett. 11, 129–137 (2009)

    Article  Google Scholar 

  31. A. Banerjee, Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals. Progress Electromagn. Res. 89, 11–22 (2009)

    Article  Google Scholar 

  32. A. Banerjee, Enhancement in sensitivity of blood glucose sensor by using 1D defect ternary photonic band gap structures. J. Opt. 48, 262–265 (2019)

    Article  Google Scholar 

  33. A. Banerjee, Design of enhanced sensitivity gas sensors by using 1D defect ternary photonic band gap structures. Indian J. Phys. 94, 535–539 (2020)

    Article  ADS  Google Scholar 

  34. A. Banerjee, Novel applications of one-dimensional photonic crystal in optical buffering and optical time division multiplexing. Optik Int. J. Light Electron Opt. 122, 355–357 (2011)

    Article  Google Scholar 

  35. A. Banerjee, Binary number sequence multilayer structure based refractometric optical sensing element. J. Electromagn. Waves Appl. 22, 2439–2449 (2008)

    Article  ADS  Google Scholar 

  36. A. Banerjee, Design of narrowband optical filters using binary number sequence photonic crystals. Int. J. Infrared Millimeter Waves 29, 1070–1082 (2008)

    Article  ADS  Google Scholar 

  37. A. Banerjee, Testing multilayer structures for optical filtering in temperature unstable environments. Optik 126, 3728–3730 (2015)

    Article  ADS  Google Scholar 

  38. A. Banerjee, S. Rizvi, Suitability of 1D photonic band gap structures for electrical tuning of transmission spectrum. In Opt. Filters 2018 Int. Conf. Comput. Charact. Tech. Eng. & Sci. (CCTES), 272–275 (2018).

  39. A. Banerjee, Design of Beam Splitters by Using 1D Defect Ternary Photonic Band Gap Structures. In Proc. Fifth Int. Conf. Inventive Mater. Sci. Appl. 27–32 (2023).

  40. A. Banerjee, U. Malaviya, Design of a tunable ultraviolet filter using metallodielectric photonic crystal. In 2007 IEEE Appl. Electromagn. Conf. (AEMC). 1–4 (2007)

  41. A. Banerjee, Design of a multiwavelength optical buffer for optical networks by using a 1D defect ternary photonic multilayer structures. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00992-z

    Article  Google Scholar 

  42. A. Banerjee, A note on “Variable-focus liquid lens based on electrically responsive fluid”. J. Opt. (2022). https://doi.org/10.1007/s12596-022-01013-9

    Article  Google Scholar 

  43. Z.A. Zaky, A. Sharma, S. Alamri et al., Detection of fat concentration in milk using ternary photonic crystal. Silicon 14, 6063–6073 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Kulshreshtha, A. & Banerjee, A. Design of corrosion sensors by using 1D quaternary photonic crystal with defect layer. J Opt 52, 1919–1924 (2023). https://doi.org/10.1007/s12596-022-01085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01085-7

Keywords

Navigation