Skip to main content
Log in

Generation and expansion of Laguerre–Gaussian beams

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Laguerre–Gaussian (LG) beams are typical vortex beams with orbital angular momentum (OAM), spiral wavefront phase, and donut-shaped intensity distribution. They are widely used in micro-manipulation, super-resolution microscopy, communication, gravitational wave detection and other fields. LG beam generation methods include passive and active methods. The passive methods are to modulate the Gaussian beams into LG beams outside the resonator through the phase elements; the active methods are to directly excite the high-order transverse modes in the resonant cavity to obtain LG beams. In addition, researchers have also conducted extensive research on the expansion of LG beam parameters in time and frequency domain in recent years. In time domain, optical elements, Q-switched and mode-locked techniques are mainly used to obtain LG pulses with high peak power and short pulse width; in frequency domain, second harmonic generation (SHG), sum-frequency generation (SFG) and optical parametric oscillation (OPO) are mainly used to broaden the spectral range of LG beams. This paper reviews the generation methods of LG beams and the expansion research of LG beam parameters in time and frequency domain, summarizes the LG-mode characteristics obtained by each method, and looks forward to the development trend of LG beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hamazaki, Y. Mineta, K. Oka et al., Direct observation of Gouy phase shift in a propagating optical vortex. Opt. Express. 14, 18 (2006)

    Article  Google Scholar 

  2. P. Coullet, L. Gil, F. Rocca, Optical vortices. Opt. Commun. 73, 5 (1989)

    Article  Google Scholar 

  3. L. Allen, M.W. Beijersbergen, R. Spreeuw et al., Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes. Phys Rev. A. 45, 11 (1992)

    Article  Google Scholar 

  4. G. Gibson, J. Courtial, M.J. Padgett et al., Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express. 12, 22 (2004)

    Article  Google Scholar 

  5. Z. Wang, N. Zhang, X.C. Yuan, High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication. Opt. Express. 19, 2 (2011)

    Google Scholar 

  6. H. He, M. Friese, N.R. Heckenberg et al., Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 5 (1995)

    Article  Google Scholar 

  7. S.H. Tao, X.C. Yuan, J. Lin et al., Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams. J. Appl. Phys. 100, 4 (2006)

    Article  Google Scholar 

  8. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 11 (1994)

    Article  Google Scholar 

  9. P. Török, P. Munro, The use of Gauss–Laguerre vector beams in STED microscopy. Opt. Express. 12, 15 (2004)

    Article  Google Scholar 

  10. A. Allocca, A. Gatto, M. Tacca et al., Higher-order Laguerre–Gauss interferometry for gravitational-wave detectors with in situ mirror defects compensation. Phys. Rev. D. 92, 10 (2015)

    Article  Google Scholar 

  11. M. Granata, C. Buy, R. Ward et al., Higher-Order Laguerre–Gauss mode generation and interferometry for gravitational wave detectors. Phys. Rev. Lett. 105, 23 (2010)

    Article  Google Scholar 

  12. R. Fickler, R. Lapkiewicz, W.N. Plick et al., Quantum entanglement of high angular momenta. Science 338, 6107 (2012)

    Article  Google Scholar 

  13. R. Fickler, G. Campbell, B. Buchler, et al. Quantum entanglement of angular momentum states with quantum numbers up to 10010. Proceedings of the National Academy of Sciences of the United States of America. 113, 48 (2016)

  14. A. Picón, J. Mompart, J.D. Aldana et al., Photoionization with orbital angular momentum beams. Opt. Express. 18, 4 (2010)

    Article  Google Scholar 

  15. G.F. Quinteiro, J. Berakdar, Electric currents induced by twisted light in Quantum Rings. Opt. Express. 17, 22 (2009)

    Article  Google Scholar 

  16. Y. Tokizane, K. Shimatake, Y. Toda et al., Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices. Opt. Express. 17, 26 (2009)

    Article  Google Scholar 

  17. C. Hnatovsky, V.G. Shvedov, W. Krolikowski et al., Materials processing with a tightly focused femtosecond vortex laser pulse. Opt. Lett. 35, 20 (2010)

    Article  Google Scholar 

  18. J.J.J. Nivas, H.E. Shutong, K.K. Anoop, Laser ablation of silicon induced by a femtosecond optical vortex beam. Opt. Lett. 40, 20 (2015)

    Article  Google Scholar 

  19. M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen et al., Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 1–3 (1993)

    Article  Google Scholar 

  20. N.R. Heckenberg, R. Mcduff, C.P. Smith et al., Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 3 (1992)

    Article  Google Scholar 

  21. M.R. Dennis, K. O'Holleran, M.J. Padgett. Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. Prog. Opt. 53, (2009)

  22. G.H. Kim, J.H. Jeon, K.H. Ko et al., Optical vortices produced with a nonspiral phase plate. Appl. Opt. 36, 33 (1997)

    Article  Google Scholar 

  23. L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 16 (2006)

    Article  Google Scholar 

  24. L. Marrucci, E. Karimi, S. Slussarenko et al., Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J Opt. 13, 6 (2011)

    Article  Google Scholar 

  25. M.W. Beijersbergen, R.P.C. Coerwinkel, M. Kristensen et al., Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 5–6 (1994)

    Article  Google Scholar 

  26. S.S.R. Oemrawsingh, J.A.W. Houwelingen, E.R. Eliel et al., Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 3 (2004)

    Article  Google Scholar 

  27. K. Sueda, G. Miyaji, N. Miyanaga et al., Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express. 12, 15 (2004)

    Article  Google Scholar 

  28. R. Carmel, S. Zommer, S. Moed et al., Adjustable spiral phase plate. Appl. Opt. 43, 12 (2004)

    Google Scholar 

  29. J. Xin, K. Dai, Z. Lei et al., Generation of optical vortices by using spiral phase plates made of polarization dependent devices. Opt. Lett. 39, 7 (2014)

    Article  Google Scholar 

  30. P. Schemmel, G. Pisano, B. Maffei, Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. Opt. Express. 22, 12 (2014)

    Article  Google Scholar 

  31. J.F. Algorri, V. Urruchi, B. Garcia-Camara et al., Generation of optical vortices by an ideal liquid crystal spiral phase plate. IEEE Electron Device Lett. 35, 8 (2014)

    Article  Google Scholar 

  32. D.P. Ghai, P. Senthilkumaran, R.S. Sirohi, Adaptive helical mirror for generation of optical phase singularity. Appl. Opt. 47, 10 (2008)

    Google Scholar 

  33. D.P. Ghai, Generation of optical vortices with an adaptive helical mirror. Appl. Opt. 50, 10 (2011)

    Article  Google Scholar 

  34. Y. Ohtake, T. Ando, N. Fukuchi et al., Universal generation of higher-order multiringed Laguerre–Gaussian beams by using a spatial light modulator. Opt. Lett. 32, 11 (2007)

    Article  Google Scholar 

  35. N. Matsumoto, T. Ando, T. Inoue et al., Generation of high-quality higher-order Laguerre–Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt. Soc. Am. A. 25, 7 (2008)

    Article  Google Scholar 

  36. R. Fickler, R. Lapkiewicz, W.N. Plick et al., Entanglement of high angular momenta. Springer International Publishing. 338, 6107 (2012)

    Google Scholar 

  37. S. Vyas, P. Senthilkumaran, Vortices from wavefront tilts. Opt Lasers Eng. 48, 9 (2010)

    Article  Google Scholar 

  38. V.G. Shvedov, Y.V. Izdebskaya, A.N. Alekseev et al., The formation of optical vortices in the course of light diffraction on a dielectric wedge. Tech. Phys. Lett. 28, 3 (2002)

    Article  Google Scholar 

  39. Y. Izdebskaya, V. Shvedov, A. Volyar, Generation of higher-order optical vortices by a dielectric wedge. Opt. Lett. 30, 18 (2005)

    Google Scholar 

  40. J. Lin, X.C. Yuan, J. Bu et al., Selective generation of high-order optical vortices from a single phase wedge. Opt. Lett. 32, 20 (2007)

    Article  ADS  Google Scholar 

  41. N. Yu, P. Genevet, M.A. Kats, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science (New York). 334, 6054 (2011)

  42. Y. Yang, W. Wang, P. Moitra et al., Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 3 (2014)

    Article  Google Scholar 

  43. E. Karimi, S.A. Schulz, I.D. Leon et al., Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, 5 (2014)

    Article  Google Scholar 

  44. Y.M. Wang, X.Y. Fang, Z.Y. Kuang et al., On-chip generation of broadband high-order Laguerre–Gaussian modes in a metasurface. Opt. Lett. 42, 13 (2017)

    ADS  Google Scholar 

  45. J. Wang, Metasurfaces enabling structured light manipulation: advances and perspectives. Chin Opt Lett. 16, 5 (2018)

    Google Scholar 

  46. J. Du, J. Wang, Chip-scale optical vortex lattice generator on a silicon platform. Opt. Lett. 42, 23 (2017)

    Article  Google Scholar 

  47. D. Mcgloin, N.B. Simpson, M.J. Padgett, Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. Appl. Opt. 37, 3 (1998)

    Article  Google Scholar 

  48. S. Li, Q. Mo, X. Hu et al., Controllable all-fiber orbital angular momentum mode converter. Opt. Lett. 40, 18 (2015)

    Article  Google Scholar 

  49. P.Z. Dashti, F. Alhassen, H.P. Lee, Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Phys. Rev. Lett. 96, 4 (2006)

    Article  Google Scholar 

  50. W. Zhang, K. Wei, L. Huang et al., Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating. Opt. Express. 24, 17 (2016)

    Article  ADS  Google Scholar 

  51. N.K. Viswanathan, V.V.G. Inavalli, Generation of optical vector beams using a two-mode fiber. Opt. Lett. 34, 8 (2009)

    Article  Google Scholar 

  52. V.V.G.K. Inavalli, N.K. Viswanathan, Switchable vector vortex beam generation using an optical fiber. Opt. Commun. 283, 6 (2010)

    Google Scholar 

  53. P. Vayalamkuzhi, S. Bhattacharya, U. Eigenthaler et al., Direct patterning of vortex generators on a fiber tip using a focused ion beam. Opt. Lett. 41, 10 (2016)

    Article  Google Scholar 

  54. R.S.R. Ribeiro, P. Dahal, A. Guerreiro et al., Optical fibers as beam shapers: from Gaussian beams to optical vortices. Opt. Lett. 41, 10 (2016)

    Google Scholar 

  55. K. Weber, F. Hütt, S. Thiele et al., Single mode fiber based delivery of OAM light by 3D direct laser writing. Opt. Express. 25, 17 (2017)

    Article  Google Scholar 

  56. R. Kumar, D.S. Metha, A. Sachdeva et al., Generation and detection of optical vortices using all fiber-optic system. Opt. Commun. 281, 13 (2008)

    Article  Google Scholar 

  57. S. Pidishety, S. Pachava, P. Gregg et al., Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler. Opt. Lett. 42, 21 (2017)

    Article  ADS  Google Scholar 

  58. J. Wen, X. He, J. Xing et al., All-fiber OAM amplifier with high purity and broadband spectrum gain based on fused taper vortex-beam coupler. IEEE Photo. J. 10, 6 (2018)

    Article  ADS  Google Scholar 

  59. G.K.L. Wong, M.S. Kang, H.W. Lee et al., Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science 337, 6093 (2012)

    Article  Google Scholar 

  60. H. Xu, L. Yang, Conversion of orbital angular momentum of light in chiral fiber gratings. Opt. Lett. 38, 11 (2013)

    Article  Google Scholar 

  61. X.M. Xi, G.K.L. Wong, M.H. Frosz et al., Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber. Optica. 1, 3 (2014)

    Article  Google Scholar 

  62. C. Fu, S. Liu, Z. Bai et al., Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen-oxygen flame. J. Light. Technol. 36, 9 (2018)

    Article  Google Scholar 

  63. C. Fu, S. Liu, Y. Wang et al., High-order orbital angular momentum mode generator based on twisted photonic crystal fiber. Opt. Lett. 43, 8 (2018)

    Article  ADS  Google Scholar 

  64. K. Ren, L. Ren, J. Liang et al., Excitation of high-quality orbital angular momentum vortex beam in adiabatically helical twisted single-mode fiber. Opt. Express. 29, 6 (2021)

    Article  Google Scholar 

  65. M. Okida, T. Omatsu, M. Itoh, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO(4) 1.3-mum bounce laser. Opt. Express. 15, 12 (2007)

  66. S.P. Chard, P.C. Shardlow, M.J. Damzen, High-power non-astigmatic TEM00 and vortex mode generation ina compact bounce laser design. App. Phys. B. 97, 2 (2009)

    Article  Google Scholar 

  67. Ruchi, P. Senthilkumaran, S.K. Pal. Phase Singularities to Polarization Singularities. Int J Opt. 2020 (2020)

  68. T. Moser, J. Balmer, D. Delbeke et al., Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating. Appl. Opt. 45, 33 (2006)

    Article  Google Scholar 

  69. T. Moser, M.A. Ahmed, F. Pigeon et al., Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors. Laser Phys Lett. 1, 5 (2004)

    Article  Google Scholar 

  70. D. Li, K. Xia, J. Li et al., Efficient, high-power, and radially polarized fiber laser. Opt. Lett. 35, 13 (2010)

    ADS  Google Scholar 

  71. K. Yonezawa, Y. Kozawa, S. Sato, Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Opt. Lett. 31, 14 (2006)

    Article  Google Scholar 

  72. Y. Kozawa, K. Yonezawa, S. Sato, Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal. Appl Phys B. 88, 1 (2007)

    Article  Google Scholar 

  73. Y. Mushiake, K. Matsumura, N. Nakajima, Generation of radially polarized optical beam mode by laser oscillation. Proc IEEE Inst Electr Electron Eng. 60, 9 (1972)

    Google Scholar 

  74. Y. Kozawa, S. Sato, Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett. 30, 22 (2005)

    Article  Google Scholar 

  75. J.F. Bisson, J. Li, K. Ueda et al., Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon. Opt. Express. 14, 8 (2006)

    Article  Google Scholar 

  76. M.D. Wei, Y.S. Lai, K.C. Chang, Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser. Opt. Lett. 38, 14 (2013)

    Article  ADS  Google Scholar 

  77. B. Sun, A. Wang, C. Gu et al., Gear-Like Metallic Core Fiber for Generation of a Radially Polarized Beam. J. Light. Technol. 33, 1 (2015)

    Article  Google Scholar 

  78. G.Y. He, J. Guo, Z.X. Jiao et al., Generation of high power and high stability azimuthally polarized beams in a Nd:YAG laser. Laser Phys. 22, 8 (2012)

    Article  Google Scholar 

  79. J.L. Li, C.C. Wang, W.Q. Wang, Generation of an azimuthally polarized beam with a metallic ring core fiber. Appl. Opt. 52, 32 (2013)

    Article  Google Scholar 

  80. R. Oron, S. Blit, N. Davidson et al., The formation of laser beams with pure azimuthal or radial polarization. Appl. Phys. Lett. 77, 21 (2000)

    Article  Google Scholar 

  81. R. Aghbolaghi, H.S. Charehjolo, Radially and azimuthally polarized laser beams by thin-disk laser. Appl. Opt. 55, 13 (2016)

    Article  Google Scholar 

  82. K.C. Chang, T. Lin, M.D. Wei, Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon. Opt. Express. 21, 13 (2013)

    Article  Google Scholar 

  83. M.P. Thirugnanasambandamet, Y. Senatsky, K. Ueda, Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal. Opt. Express. 19, 3 (2011)

    Google Scholar 

  84. G. He, J. Guo, B. Wang et al., Generation of radially polarized beams based on thermal analysis of a working cavity. Opt. Express. 19, 19 (2011)

    Article  Google Scholar 

  85. T. Grosjean, M. Suarez, A. Sabac, Generation of polychromatic radially and azimuthally polarized beams. Appl. Phys. Lett. 93, 23 (2008)

    Article  Google Scholar 

  86. K.C. Chang, M.D. Wei. Generation and transformation of azimuthal and radial polarization in a typically three-element Nd:GdVO4 laser. Proceedings of SPIE. 9194 (2014)

  87. Y. Senatsky, J.F. Bisson, A. Shelobolin et al., Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration. Laser Phys. 19, 5 (2009)

    Article  Google Scholar 

  88. M.P. Thirugnanasambandam, Y. Senatsky, K. Ueda, Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser. Laser Phys Lett. 7, 9 (2010)

    Article  Google Scholar 

  89. S. Tan, C. Zhou, A. Shirakakwa, et al. Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter. Opt Laser Technol. 96, (2017)

  90. S. Ngcobo, I. Litvin, L. Burger et al., A digital laser for on-demand laser modes. Nat. Commun. 4, 4 (2013)

    Article  Google Scholar 

  91. S.S. Liu, X.D. Chen, J.X. Pu et al., A V-folded digital laser for on-demand vortex beams by astigmatic transformation of hermite-gaussian modes*. Chinese Phys. Lett. 36, 12 (2019)

    Article  Google Scholar 

  92. A. Ito, Y. Kozawa, S. Sato, Generation of hollow scalar and vector beams using a spot-defect mirror. J. Opt. Soc. Am. A. 27, 9 (2010)

    Article  Google Scholar 

  93. K. Kano, Y. Kozawa, S. Sato. Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror. Int J Opt. 2012 (2012)

  94. S. Vyas, Y. Kozawa, S. Sato, Generation of a vector doughnut beam from an internal mirror He–Ne laser. Opt. Lett. 39, 7 (2014)

    Article  Google Scholar 

  95. Z. Qiao, G. Xie, Y. Wu et al., Generating high-charge optical vortices directly from laser up to 288th order. Laser Photonics Rev. 12, 8 (2018)

    Google Scholar 

  96. L. Ping, Z. Shulin, W. Sha, et al. High efficiency vortex beam generation by optimization of defect-spot mirror. Chinese Journal of Lasers. 47, 5 (0501005)

  97. Y. Uesugi, S. Sato, Y. Kozawa, Direct generation of the lowest-order vortex beam using a spot defect mirror in the ultraviolet region. Opt. Lett. 45, 7 (2020)

    Article  Google Scholar 

  98. J.-F. Bisson, Yu. Senatsky, K.-I. Ueda, Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping. Laser Phys Lett. 2, 7 (2005)

    Article  Google Scholar 

  99. J.W. Kim, J.I. Mackenzie, J.R. Hayes et al., High power Er:YAG laser with radially-polarized Laguerre–Gaussian (LG01) mode output. Opt. Express. 19, 15 (2011)

    Article  Google Scholar 

  100. J.W. Kim, W.A. Clarkson. Selective generation of Laguerre–Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser. Opt. Commun. 296, (2013)

  101. D.J. Kim, J.W. Kim, Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt. Lett. 40, 3 (2015)

    Article  Google Scholar 

  102. D. Lin, J.M.O. Daniel, W.A. Clarkson, Controlling the handedness of directly excited Laguerre–Gaussian modes in a solid-state laser. Opt. Lett. 39, 13 (2014)

    Article  Google Scholar 

  103. T.H. Kim, J.S. Park, W.K. Ji et al., Direct Generation of a Laguerre–Gaussian-mode optical vortex beam in a single-frequency Nd:YVO4 unidirectional ring laser. J Korean Phys Soc. 75, 8 (2019)

    Article  Google Scholar 

  104. Y.J. Oh, T.H. Kim, E.J. Park et al., Direct generation of the first-radial-order Laguerre–Gaussian mode in a Nd:YVO 4 laser incorporating a core-ring-shaped pump fibre. Laser Phys. 30, 9 (2020)

    Article  Google Scholar 

  105. D.J. Kim, J.W. Kim, W.A. Clarkson, Q-switched Nd:YAG optical vortex lasers. Opt. Express. 21, 24 (2013)

    Article  Google Scholar 

  106. Z. Fang, K. Xia, Y. Yao et al., Radially polarized LG01-mode Nd:YAG laser with annular pumping. Appl Phys B. 117, 1 (2014)

    Article  Google Scholar 

  107. Z. Fang, K. Xia, Y. Yao et al., Radially polarized and passively Q-switched Nd:YAG Laser under annular-shaped pumping. IEEE J Sel Top in Quant. 21, 1 (2014)

    Google Scholar 

  108. D. Naidoo, T. Godin, M. Fromager et al., Transverse mode selection in a monolithic microchip laser. Opt. Commun. 284, 23 (2011)

    Article  Google Scholar 

  109. Y. Xu, J.J. Yu, X.H. Han et al., Acousto-Optically Q-switched and vortex Nd…YAG laser by using circular dammann grating for annular pumping. Chinese Journal of Laser. 43, 06 (2016). ((in Chinese))

    Google Scholar 

  110. Y. Zhao, Q. Liu, W. Zhou et al., ~1 mJ pulsed vortex laser at 1645 nm with well-defined helicity. Opt. Express. 24, 14 (2016)

    Google Scholar 

  111. Q. Liu, Y. Zhao, W. Zhou et al., Control of vortex helicity with a quarter-wave plate in an Er:YAG ceramic solid state laser. IEEE Photon. J. 9, 1 (2016)

    Google Scholar 

  112. Y. Chen, M. Ding, J. Wang et al., High-energy 2-μm pulsed vortex beam excitation from a Q-switched Tm:LuYAG laser. Opt. Lett. 45, 3 (2020)

    Google Scholar 

  113. H.S. He, Z. Chen, J. Dong, Direct generation of vector vortex beams with switchable radial and azimuthal polarizations in a monolithic Nd:YAG microchip laser. Appl. Phys. Express. 10, 5 (2017)

    Article  Google Scholar 

  114. H.S. He, Z. Chen, H.B. Li et al., Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr, Nd:YAG self-Q-switched microchip laser. Laser Phys. 28, 5 (2018)

    Article  Google Scholar 

  115. G.Y. Li, K.G. Xia, Z.Y. Wang et al., Conical refraction, for annular pumping of an efficient vortex Nd:YAG laser. Laser Phys Lett. 14, 7 (2017)

    Article  Google Scholar 

  116. Y. Ding, M. Xu, Y. Zhao et al., Thermally driven continuous-wave and pulsed optical vortex. Opt. Lett. 39, 8 (2014)

    Article  Google Scholar 

  117. S. Wang, Z.G. Zhao, I. Ito et al., Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror. OSA Continuum. 2, 3 (2019)

    Article  Google Scholar 

  118. S.C. Chu, T. Ohtomo, K. Otsuka, Generation of doughnutlike vortex beam with tunable orbital angular momentum from lasers with controlled Hermite-Gaussian modes. Appl. Opt. 47, 14 (2008)

    Article  Google Scholar 

  119. C.Y. Lee, C.C. Chang, C.Y. Cho et al., Generation of higher order vortex beams from a YVO4/Nd:YVO4 self-raman laser via off-axis pumping with mode converter. IEEE J Sel Top in Quant. 21, 1 (2014)

    Google Scholar 

  120. X. Huang, S. Cui, X. Guan, et al. Directgeneration of eye-safe single-and dual-vortex lasers via off-axis pumping of the active medium. (2017)

  121. Y.H. Hsieh, Y.H. Lai, M.X. Hsieh et al., Generating high-power asymmetrical Laguerre-Gaussian modes and exploring topological charges distribution. Opt. Express. 26, 24 (2018)

    Article  Google Scholar 

  122. X. Huang, B. Xu, S. Cui et al., Direct generation of vortex laser by rotating induced off-axis pumping. IEEE J Sel Top in Quant. 24, 5 (2018)

    Article  Google Scholar 

  123. S. Wang, S.L. Zhang, H.C. Qiao et al., Direct generation of vortex beams from a double-end polarized pumped Yb:KYW laser. Opt. Express. 26, 21 (2018)

    Google Scholar 

  124. N. Li, B. Xu, S. Cui et al., High-Order Vortex Generation From CW and Passively Q-Switched Pr:YLF Visible Lasers. IEEE Photon. Technol. Lett. 31, 17 (2019)

    Article  ADS  Google Scholar 

  125. H. Laabs, B. Ozygus, Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping. Opt Laser Technol. 28, 3 (1996)

    Article  Google Scholar 

  126. A. Schwarz, W. Rudolph, Dispersion-compensating beam shaper for femtosecond optical vortex beams. Opt. Lett. 33, 24 (2008)

    Article  Google Scholar 

  127. H.C. Liang, Y.J. Huang, Y.C. Lin et al., Picosecond optical vortex converted from multigigahertz self-mode-locked high-order Hermite-Gaussian Nd:GdVO(4) lasers. Opt. Lett. 34, 24 (2009)

    Article  ADS  Google Scholar 

  128. Y. Tokizane, K. Oka, R. Morita, Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion. Opt. Express. 17, 17 (2009)

    Article  Google Scholar 

  129. V.G. Shvedov, C. Hnatovsky, W. Krolikowski et al., Efficient beam converter for the generation of femtosecond vortices. Opt. Lett. 35, 15 (2010)

    Article  Google Scholar 

  130. Y. Zhao, Z. Wang, H. Yu et al., Direct generation of optical vortex pulses. Appl. Phys. Lett. 101, 3 (2012)

    Google Scholar 

  131. K. Yamane, Y. ToDa, R. Morita, Ultrashort optical-vortex pulse generation in few-cycle regime. Opt. Express. 20, 17 (2012)

    Article  Google Scholar 

  132. Y. Zhang, H. Yu, H. Zhang et al., Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling. Opt. Express. 24, 5 (2016)

    Google Scholar 

  133. Q.Y. Liu, B. Zhang, S.S. Qi et al., Integration of helicity-control and pulse-modulation for vortex laser based on a black phosphorus plate. Opt. Express. 24, 26 (2016)

    Article  Google Scholar 

  134. L. Ma, P. Zhang, Z. Li et al., Spatiotemporal evolutions of ultrashort vortex pulses generated by spiral multi-pinhole plate. Opt. Express. 25, 24 (2017)

    Article  Google Scholar 

  135. Z.H. Li, J.Y. Peng, Q.L. Li et al., Generation of picosecond vortex beam in a self-mode-locked Nd:YVO4 laser. Optoelectron Lett. 13, 3 (2017)

    Article  Google Scholar 

  136. L. Jianwei, Z. Yi, L. Zuohan et al., Self-Mode-Locked Picosecond Vortex Beams Based on Nd:GdVO4 Crystal. Laser Optoelectron. Prog. 55, 2 (2018)

    Article  Google Scholar 

  137. F. Tang, B. Shi, Q. Zhang et al., SESAM-based mode-locked vortex Ti:sapphire laser using spot-defect spatial filter for intra-cavity mode selection. Laser Phys. 30, 12 (2020)

    Article  Google Scholar 

  138. G.A. Swartzlander, Achromatic optical vortex lens. Opt. Lett. 31, 11 (2006)

    Article  Google Scholar 

  139. K. Bezuhanov, A. Dreischuh, G.G. Paulus et al., Vortices in femtosecond laser fields. Opt. Lett. 29, 16 (2004)

    Article  Google Scholar 

  140. D.N. Naik, N.A. Saad, D.N. Rao et al., Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach. Sci. Rep. 7, 1 (2017)

    Article  ADS  Google Scholar 

  141. A.J. Lee, H.M. Pask, T. Omatsu, A continuous-wave vortex Raman laser with sum frequency generation. App. Phys. B. 122, 3 (2016)

    Article  Google Scholar 

  142. A.J. Lee, T. Omatsu, H.M. Pask, Direct generation of a first-Stokes vortex laser beam from a self-Raman laser. Opt. Express. 21, 10 (2013)

    Google Scholar 

  143. K. Furuki, M.T. Horikawa, A. Ogawa, et al. Tunable mid-infrared (6.3–12 μm)optical vortex pulse generation. Opt. Express. 22, 21 (2014)

  144. M. Koyama, T. Hirose, M. Okida et al., Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier. Opt. Express. 19, 2 (2011)

    Article  Google Scholar 

  145. T. Omatsu, M. Okida, K. Iwamatsu, et al. Frequency-doubled vortex laser based on a side-pumped Nd:YVO4 compact stigmatic bounce amplifier. Quantum Electronics Conference & Lasers & Electro-optics. (2011)

  146. K. Miyamoto, S. Miyagi, M. Yamada et al., Optical vortex pumped mid-infrared optical parametric oscillator. Opt. Express. 19, 13 (2011)

    Article  Google Scholar 

  147. T. Yusufu, Y. Tokizane, M. Yamada et al., Tunable 2-μm optical vortex parametric oscillator. Opt. Express. 20, 21 (2012)

    Article  Google Scholar 

  148. Z.Y. Zhou, L. Yan, D.S. Ding et al., Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity. Opt. Express. 22, 19 (2014)

    Article  ADS  Google Scholar 

  149. M. Koyama, A. Shimomura, K. Miyamoto et al., Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier. App. Phys. B. 116, 2 (2014)

    Article  Google Scholar 

  150. A. Abulikemu, T. Yusufu, R. Mamuti et al., Widely-tunable vortex output from a singly resonant optical parametric oscillator. Opt. Express. 23, 14 (2015)

    Article  Google Scholar 

  151. A. Abulikemu, T. Yusufu, R. Mamuti et al., Octave-band tunable optical vortex parametric oscillator. Opt. Express. 24, 14 (2016)

    Article  Google Scholar 

  152. S. Araki, K. Suzuki, S. Nishida, et al. Ultra-broadband tunable (0.67–2.57 m) optical vortex parametric oscillator. Jpn J Appl Phys. 56, 10 (2017)

  153. A. Aadhi, V. Sharma, R.P. Singh et al., Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source. Opt. Lett. 42, 18 (2017)

    Article  Google Scholar 

  154. T. Yusufu, S. Niu, P. Tuersun et al., Tunable 3 m optical vortex parametric oscillator. Jpn J Appl Phys. 57, 12 (2018)

    Article  Google Scholar 

  155. S. Niu, S. Wang, M. Ababaike, et al. Tunable near- and mid-infrared (1.36–1.63 µm and 3.07–4.81 µm) optical vortex laser source. Laser Phys Lett. 17, 4 (2020)

  156. M. Ababaike, S. Wang, P. Aierken et al., Near and mid-infrared optical vortex parametric oscillator based on KTA. Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  157. K. Dholakia, N.B. Simpson, M.J. Padgett et al., Second-harmonic generation and the orbital angular momentum of light. Phys Rev. A. 54, 5 (1996)

    Article  Google Scholar 

  158. J. Courtial, K. Dholakia, L. Allen et al., Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Phys Rev. A. 56, 5 (1997)

    Article  Google Scholar 

  159. F.A. Bovino, M. Braccini, M. Giardina et al., Orbital angular momentum in noncollinear second-harmonic generation by off-axis vortex beams. JOSA B. 28, 11 (2011)

    Article  Google Scholar 

  160. Y.L. Zhao, F.S. Li, X.D. Qiu et al., Frequency doubling effect of topological charge of composite vortex in frequency doubling process. Laser Optoelectron. Prog. 54, 05 (2017). ((in Chinese))

    Google Scholar 

  161. J. Heinze, H. Vahlbruch, B. Willke, Frequency-doubling of continuous laser light in the Laguerre-Gaussian modes LG00 and LG33. Opt. Lett. 45, 18 (2020)

    Google Scholar 

  162. X. Fang, Z. Kuang, P. Chen et al., Examining second-harmonic generation of high-order Laguerre-Gaussian modes through a single cylindrical lens. Opt. Lett. 42, 21 (2017)

    Article  Google Scholar 

  163. G.H. Shao, Z.J. Wu, J.H. Chen et al., Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching. Phys Rev. A. 88, 6 (2013)

    Article  Google Scholar 

  164. C. Chen, Y. Wu, A. Jiang et al., New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B. 6, 4 (1989)

    Article  Google Scholar 

  165. Y. Li, Z.Y. Zhou, D.S. Ding et al., Sum frequency generation with two orbital angular momentum carrying laser beams. J. Opt. Soc. Am. B. 32, 3 (2015)

    Article  Google Scholar 

  166. A. BerzAnskis, A. Matijosius, A. Piskarskas et al., Conversion of topological charge of optical vortices in a parametric frequency converter. Opt. Commun. 140, 4–6 (1997)

    Google Scholar 

  167. H.J. Wu, L.W. Mao, Y.J. Yang et al., Radial modal transitions of Laguerre-Gauss modes during parametric upconversion: towards the full-field selection rule of spatial modes. Phys. Rev. A 101, 6 (2020)

    Article  Google Scholar 

  168. E.A. Raymond, T.L. Tarbuck, M.G. Brown et al., Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations. J. Phys. Chem. B. 107, 2 (2003)

    Article  Google Scholar 

Download references

Funding

Funding information This work has been supported by the Natural Science Foundation of China (Grant No. 62075018), People's Government of Jilin Province (Grant No. 20200403018SF) and Science and technology research project of Jilin Provincial Department of Education (Grant No. JJKH20210818KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, Y. & Wang, C. Generation and expansion of Laguerre–Gaussian beams. J Opt 51, 910–926 (2022). https://doi.org/10.1007/s12596-022-00857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00857-5

Keywords

Navigation