Skip to main content
Log in

Thermoluminescence spectroscopic analysis of fuel mixed cooking oil using hyperspectral analysis

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The analysis of combustion for any liquid mixed fuel using oil burner inside and outside industrial boiler became complicated. Also, studying emissions of thermoluminescence inside flame using physical probes is dangerous and not accurate. In the present research, the used fuels mixed conventional/light diesel oil (LDO) (20% WCO + 80% LDO by mass) called B1 and (20% WCO + 80% HDO by mass) called B2; where HDO and WCO are abbreviation of heavy diesel oil and waste cooking oil fuel, respectively. The aim of this research is to make comparative study between combustion characteristics using hyperspectral camera compared with conventional method like thermocouple and gas analyzer at exhaust using LDO, 20% WCO + 80% LDO (B1) and 20% WCO + 80% HDO (B2) using twin siphon nozzle in industrial burner at water-cooled jacket boiler. The analysis showed that good great agreement in measuring CO emissions (ppm/kW) and C2 (a.u.) radicals outside and inside the flame. On the other, the CH radicals and CxHy are supplementary to each other. In other words, CH radicals indicate reaction between hydrocarbons inside reaction zone of flame but CxHy is indication for chemical composition of fuel and indicator to quality of atomization. By applying Wien’s law, inflame thermal contours are drawn. The results showed that the highest thermal inflame temperature is 1800 °C could be achieved at combustion of LDO and B2 at Φ = 1.1 and 0.96, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Daho, G. Vaitilingom, O. Sanogo, Optimization of the combustion of blends of domestic fuel oil and cottonseed oil in a non-modified domestic boiler. Fuel 88, 1261–1269 (2009)

    Article  Google Scholar 

  2. L. Battais, S. Defaye, G. Vaitilingom, Perspectives de développement de l’utilisation des huiles végétales pures hors utilisations biocarburant, Rapport final Cirad

  3. A. Mahfouz, M.S. Gad, A. El Fatih, A. Emara, Comparative study of combustion characteristics and exhaust emissions of waste cooking-diesel oil blends. Ain Shams Eng. J. (2018). https://doi.org/10.1016/j.asej.2018.03.004

    Article  Google Scholar 

  4. T. Daho, G. Vaitilingom, O. Sanogo, S.K. Ouiminga, A.S. Zongo, B. Piriou, Combustion of vegetable oils under optimized conditions of atomization and granulometry in a modified fuel oil burner. Fuel 118, 329–334 (2014)

    Article  Google Scholar 

  5. V.H. Morcos, Y.M. Abdel-Rahim, Parametric study of flame length characteristics in straight and swirl light-fuel oil burners. Fuel 78(8), 871–996 (1999)

    Article  Google Scholar 

  6. G. Tashtoush, M. Al-Widyan, M. Al-Shyoukh, Combustion performance and emissions of ethyl ester of a waste vegetable oil in a water-cooled furnace. Appl. Therm. Eng. 23, 285–293 (2003)

    Article  Google Scholar 

  7. A. Abdelgawad, A. Emara, M.S. Gad, A. Elfatih, Combustion characteristics of a swirled burner fueled with waste cooking oil, in Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition Conference, vol 6A:Energy IMECE2015-53437,V06AT07A007 (2015)

  8. H. Liu, S. Zheng, H. Zhou, C. Qi, Measurement of distributions of temperature and wavelength-dependent emissivity of a laminar diffusion flame using hyper-spectral imaging technique. Meas. Sci. Technol. 27, 25201 (2016)

    Article  Google Scholar 

  9. N. Mobaraki, J.M. Amigo, HYPER-tools. A graphical user-friendly interface for hyperspectral image analysis. Chemom. Intell. Lab. Syst. 172, 174–187 (2018)

    Article  Google Scholar 

  10. A.G. Gaydon, The Spectroscopy of Flames, 2nd edn. (Springer, London, 1957). https://doi.org/10.1007/978-94-009-5720-6. (ISBN-13: 978-94-009-5722-0, e-ISBN-13: 978-94-009-5720-6)

    Book  Google Scholar 

  11. V. Kovács, Á. Bereczky, G. Gróf, Comparative analysis of renewable gaseous fuels by flame spectroscopy, in 3rd European Combustion Meeting (2007), pp. 1–4

  12. M.R. Rhoby, D.L. Blunck, K.C. Gross, Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values. Opt. Express 22, 21600–21617 (2014)

    Article  ADS  Google Scholar 

  13. K. Gupta, Thermal characteristics of gaseous fuel flames using high temperature air. J. Eng. Gas Turbines Power 126, 9–19 (2004)

    Article  Google Scholar 

  14. David, H. Bretz, D.M. West, Air assisted simplex fuel nozzle. Assignee: Delavan Inc; West Des Moines, U.S. Patent 8 057 220, Filed: Feb. 1, 2008, prior published (2009/0197214) Aug 6, 2009, Date of Patent: Nov. 15, 2011

  15. N. Habili, J. Oorloff, Scyllarus: from research to commercial software, in Proceedings of the ASWEC 2015 24th Australasian Software Engineering Conference, Adelaide, pp. 119–122 (2015)

  16. V. Józsa, A. Kun-balog, Spectroscopic analysis of crude rapeseed oil flame. Fuel Process. Technol. 139, 61–66 (2015)

    Article  Google Scholar 

  17. H.O. Garces, L. Arias, A.J. Rojas, C. Carrasco, A. Fuentes, O. Farias, Radiation measurement based on spectral emissions in industrial flames. Measurement 87, 62–73 (2016)

    Article  Google Scholar 

  18. V. Józsa, K. Sztankó, Flame emission spectroscopy measurement of a steam blast and air blast burner. Therm. Sci. 21(2), 1021–1030 (2017)

    Article  Google Scholar 

  19. W. Yan, H. Zhou, Z. Jiang, C. Lou, X. Zhang, D. Chen, Experiments on measurement of temperature and emissivity of municipal solid waste (MSW) combustion by spectral analysis and image processing in visible spectrum. Energy Fuels 27, 6754–6762 (2013)

    Article  Google Scholar 

  20. H.A. Moneib, Experimental study of the fluctuating temperature in inert and reacting turbulent jets, Ph.D. thesis, Imperial College of Science and Technology (1980)

  21. A. Attia, H.S. Ayoub, A. Emara, A. El-Sherif, Y.H. Elbashar, Design and implementation of laser ignition system for two slot and four slot ev burners. J. Nonlinear Opt. Quantum Opt. NLOQO 49(1-2), 127–142 (2018)

    Google Scholar 

  22. H.S. Ayoub, A. Attia, A. Emara, A. El-Sherif, Y.H. Elbashar, Ultraviolet laser shadowgraphic system of measuring ev burner flame. J. Nonlinear Opt. Quantum Opt. NLOQO 49(1-2), 79–90 (2018)

    Google Scholar 

  23. H.S. Ayoub, A.F. El-Sherif, H.H. Hassan, S.A. Khairy, Y.H. Elbashar, Dilatometry of refractory metals and alloys using multi- wavelength laser shadowgraphy of filament samples. J. Nonlinear Opt. Quantum Opt. NLOQO 49(1-2), 51–61 (2018)

    Google Scholar 

  24. M. Darwiesh, A.F. El-Sherif, H.S. Ayoub, Y.H. El-sharkawy, M.F. Hassan, Y.H. Elbashar, Hyperspectral laser imaging of underwater targets. J. Opt. 47(4), 553–560 (2018). https://doi.org/10.1007/s12596-018-0493-7

    Article  Google Scholar 

  25. A. Attia, H.S. Ayoub, B. Ghazolin, A.F. El-Sherief, M. El-Gohary, A. Emara, H. Moneib, Y.H. Elbashar, In-situ soot visualization using low power 405 nm laser shadowgraphy for premixed and non-premixed flames. Ann. Univ. Craiova Phys. Phys. AUC 28, 12–16 (2018)

    Google Scholar 

  26. H.S. Ayoub, A.F. El-sherif, A.M. Mokhtar, H.H. Hassan, S.A. Khairy, Y.H. Elbashar, Optical synchronous laser shadow vibrometry for measuring Young’s modulus of tungsten at elevated temperatures. Lasers Eng. 2018X15.Ayoh-JL LIE 44.1-3, 133–156 (2019)

    Google Scholar 

  27. H.S. Ayoub, Y.H. Elbashar, H.H. Hassan, S.A. Khairy, Investigation of tungsten thermal expansion at elevated temperatures using laser shadowgraphy: a review. J. Nonlinear Opt. Quantum Opt. NLOQO 51(1–2), 1–57 (2019)

    Google Scholar 

  28. A. Mahfouz, A. Emara, H.S. Ayoub, A.F. El-Sherif, A. El Fatih, Y.H. Elbashar, Comparative spectroscopic study inside turbulent flames of diesel and waste cooking oil using hyper-spectral camera. Meas. J. Int. Meas. Confederation (IMEKO) 149, 106989 (2020)

    Article  Google Scholar 

  29. C.D. Wen, I. Mudawar, Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. Int. J. Heat Mass Transf. 47, 3591–3605 (2004)

    Article  Google Scholar 

  30. A. Mahfouz, H.A. Moneib, A. El-fatih, A.F. El-Sherif, H.S. Ayoub, A. Emara, Comparative study among waste cooking oil blends flame spectroscopy as an alternative fuel through using an industrial burner. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.06.041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Elbashar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahfouz, A., Emara, A., Ayoub, H.S. et al. Thermoluminescence spectroscopic analysis of fuel mixed cooking oil using hyperspectral analysis. J Opt 49, 370–383 (2020). https://doi.org/10.1007/s12596-020-00629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00629-z

Keywords

Navigation