Skip to main content
Log in

Method of implementation and application of all-optical frequency-encoded multiplexer and demultiplexer utilizing total reflectional switches (TRSs)

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Method of implementation of all-optical multiplexer and demultiplexer is proposed. The basic element used in this proposal is a total internal reflectional switch based on nonlinear materials having negative nonlinear refractive index. As a suitable nonlinear material, polymer 4MBCU(poly[dodecadiyn-1,12-diol-bis(n-butoxycarbonyl-methyl-urethane)]) may be useful to implement these devices. The use of controlling light induces nonlinearity and the path of the input data beam is controlled. The select inputs are in frequency-encoded format and have several advantages. Both 1:4 and 1:9 demultiplexers and 4:1 and 9:1 multiplexers are proposed in frequency-encoded format. As an application, the demultiplexer is used to implement encoder for frequency-encoded decimal numbers. The devices proposed are truly all-optical and use no electronic components for its operation and hence can show ultra-high processing speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Belhadj, N. Saidani, F. Abdelmalek, All optical logic gates based on coupled heterostructures waveguides in two dimensional photonic crystal. Optik 168, 237–243 (2018)

    Article  ADS  Google Scholar 

  2. A. Kotb, K.E. Zoiros, C. Guo, All optical XOR. NOR and NAND logic functions with parallel semiconductor optical amplifier based mach zehnder interferometer modules, optics and laser technolgy 108, 426 (2018)

    ADS  Google Scholar 

  3. G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, L. Pati, Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photon techno lett 18, 917–919 (2016)

    Article  ADS  Google Scholar 

  4. J.Y. Kin, J.M. Kang, T.Y. Kin, S.K. Han, 10gbit/s all optical composite logic gates with XOR, XNOR, OR and NAND functions using SOA-MZI structures. Elect Lett 42, 303–304 (2006)

    Article  Google Scholar 

  5. Z.H. Li, G.F. Li, Ultrafast speed configurable logic gates based on four wave mixing in a semiconductor optical amplifier. IEEE Phot Tech Lett 18, 1341–1343 (2006)

    Article  ADS  Google Scholar 

  6. L. Peili, H. De-Xiu, Z.X. Liang, CH Ming Ultrahigh speed multifunctional all optical logic gates based on FWM in SOAs with POLSK modulated signals-downloaded from IEEE explore OFC/NPOOEC (2008)

  7. K. Mukherjee, K. Maji, A. Raja, Design and performance analysis of all-optical Soliton based 4-bit two’s complement generator using reflective semiconductor optical amplifier (IEEE deVic 2019, Kalyani, West Bengal) 10.1109/DEVIC.2019.8783531 (2019)

  8. S. Kumar, Alan E. Willner Simultaneous four wave mixing and cross gain modulation for implementing an all optical X Nor logic gate using a single SOA, Optic express 14, 12 (2006)

    Google Scholar 

  9. P.L. Li, H.D. Xiu, Z.X. Liang, Z.G. Xi, Ultrahigh speed all optical half adder based on four wave mixing in semiconductor optical amplifier. Opt. Express 14, 22 (2006)

    Google Scholar 

  10. Y. Wang, J. Sun, Q. Sun, Single PPLN based simultaneous half adder, half subtractor, and OR logic gate: proposal and simulation. Opt. Exp. 15, 4 (2007)

    Google Scholar 

  11. Y. Wang, X. Zhang, J. Dong, D. Huang, Simultaneous demonstration of all optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers. Opt. Exp. 15, 23 (2007)

    Google Scholar 

  12. K. Mukherjee, D. Kumbhakar, Simulation of two photon absorption in silicon wire waveguide for implementation of all optical logic gates. Optik 123(6), 489–493 (2012)

    Article  ADS  Google Scholar 

  13. W. Wu, S. Campbell, S. Zhou, P. Yeh, Polarization encoded optical logic operation in photorefractive media. Opt. Lett. 18, 1742–1744 (1993)

    Article  ADS  Google Scholar 

  14. K. Mukherjee, Implementation of a novel hybrid encoding technique and realization of all optical logic gates exploiting difference frequency generation alone. Optik 122(4), 321–323 (2011)

    Article  ADS  Google Scholar 

  15. K. Mukherjee, Implementation of hybrid encoded all optical computation using non linear material based difference frequency generation alone. Opt. Photonics Lett. 3(1), 61–71 (2010)

    Article  Google Scholar 

  16. K. Mukherjee, Semiconductor optical amplifier based frequency encoded logic gates exploiting nonlinear polarization rotation only. J. Circuit Syst. Comput. 23(9), 1450130 (2014)

    Article  Google Scholar 

  17. K. Mukherjee, Frequency encoded optical four bit adder/Subtractor with control input using semiconductor optical amplifier. Optik 125(20), 6183 (2014)

    Article  ADS  Google Scholar 

  18. D. Mondal, S.K. Garai, All optical logic unit(BLU) using frequency encoded data. Opt. Fiber Technol. 22, 56–67 (2015)

    Article  ADS  Google Scholar 

  19. K. Mukherjee, All optical read only memory with frequency encoded addressing technique. Optik Int. J. Light Electron Opt. 122(16), 1437–1440 (2011)

    Article  Google Scholar 

  20. Y.J. Jung, N. Park, Y.M. Jhon, S. Lee, Design of all-optical read-only memory. Appl. Opt. 48, 31 (2009)

    Article  ADS  Google Scholar 

  21. K. Roychowdhury, P.P. Das, S. Mukhopadhyay, All optical time domain multiplexing demultiplexing scheme with non linear material. Opt. Eng. 44, 035201 (2005)

    Article  ADS  Google Scholar 

  22. S.K. Garain, S. Mukhopadhyay, Method of implementing frequency encoded multiplexer and demultiplexer systems using non linear semiconductor optical amplifiers. Opt. Laser Technol. 41(8), 972–976 (2009). https://doi.org/10.1016/j.optlastec.200904.005

    Article  ADS  Google Scholar 

  23. Z. Zhang, H. Xu, Optical computation based on nonlinear total reflectional optical switch at the interface. Pramana 72(3), 547–554 (2009)

    Article  ADS  Google Scholar 

  24. K. Mukherjee, A method of implementation of frequency encoded all optical logic gates based on non linear total reflectional switch at the interface. Optik Int. J. Light Electron. Opt. 122(14), 1284–1288 (2014)

    Article  Google Scholar 

  25. G.P. Agarwal, Non linear optics, vol. 3 (Academic Press, Cambridge, 2001)

    Google Scholar 

  26. S.X. Qian, R.Y. Zhu, Non linear optics (Fudan University Press, Fudan, 2005)

    Google Scholar 

  27. R.W. Boyd, Nonlinear Optics, vol. 3 (Academic Press, Cambridge, 2008)

    Google Scholar 

  28. C.M. Lawson, R.F.L. Michael, Non linear reflection at a dielectric carbon suspension interface: macroscopic theory and experiment. Appl. Phys. Lett. 64, 2081 (1994)

    Article  ADS  Google Scholar 

  29. L D Deshazer, R S Saenz, H S Barr, United States Patent 6647167, http://www.freepatentsonline.com/6647167.html(2001)

  30. K. Mukherjee, A. Raja, Design of nonlinear Kerr lens NKL and method of implementation of all optical logic gates and processors using a single NKL. Res. J. Opt. Photonics 2, 1 (2018)

    Google Scholar 

  31. K. Maji, K. Mukherjee, A. Raja, Frequency encoded all-optical universal logic gates using terahertz optical asymmetric demultiplexer. IJPOT 4(3), 1–7 (2018)

    Google Scholar 

  32. K. Maji, K. Mukherjee, A. Raja, An alternative method for implementation of frequency-encoded logic gates using a terahertz optical asymmetric demultiplexer TOAD. J. Comput. Electron. 18, 1423–1434 (2019). https://doi.org/10.1007/s10825-019-01393-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K. Method of implementation and application of all-optical frequency-encoded multiplexer and demultiplexer utilizing total reflectional switches (TRSs). J Opt 49, 102–109 (2020). https://doi.org/10.1007/s12596-020-00595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00595-6

Keywords

Navigation