Skip to main content
Log in

All-optical logic gate NAND using semiconductor optical amplifiers with simulation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Hybrid encoding technique for the representation of the binary states of information, four-wave mixing in semiconductor optical amplifier (SOA) as frequency generator and cross-polarization rotation effect in semiconductor optical amplifier as a frequency converter are used to design all-optical universal logic gate NAND. The devices can perform ultrafast operation and easily integrable. The simulated results of the proposed logic gate ensure feasibility of the proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Wang, X. Liu, Q. Tian, L. Wang, X. Xin, All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polalrization-dependent semiconductor optical amplifiers. Opt. Commun. 410, 846 (2018)

    Article  ADS  Google Scholar 

  2. N. Mitra, S. Mukhopadhyay, A new scheme of an all-optical J-K flip flop using nonlinear material. J. Opt. 37(3), 85–92 (2008)

    Article  Google Scholar 

  3. K. Mukherjee, Alternative approach to optical frequency encoded flip flops by utilizing semiconductor optical amplifier non linearity. J. Opt. 41, 16 (2012). https://doi.org/10.1007/s12596-012-0057-1

    Article  Google Scholar 

  4. S. Mukhopadhyay, An optical conversion system: from binary to decimal and decimal to binary. Opt. Commun. (Neth) 76(5–6), 2163–2171 (1990)

    Google Scholar 

  5. J.N. Roy, S. Mukhopadhyay, A minimization scheme of optical space variant logic operations in a combinational architecture. Opt. Commun. 119, 499–504 (1995)

    Article  ADS  Google Scholar 

  6. S.K. Garai, D. Samanta, S. Mukhopadhyay, All optical implementation of inversion logic operation by second harmonic generation and wave mixing character of some nonlinear material. Opt. Optoelectron. Technol. China 6(4), 43–46 (2008)

    Google Scholar 

  7. S.K. Gorai, S. Mukhopadhyay, Method of implementing frequency—encoded NOT, OR and NOR logic operations using lithium niobate waveguide and reflecting semiconductor optical amplifiers. Pramana J. Phys. 73(5), 901–912 (2009)

    Article  ADS  Google Scholar 

  8. J. Wang, J. Sun, C. Luo, Q. Sun, Experimental demonstration of wavelength conversion between ps-pulses based cascaded sum and difference frequency generation (SFG + DFG) in LiNbO3 waveguides. Opt. Express 13(19), 7405–7414 (2005)

    Article  ADS  Google Scholar 

  9. K. Mukherjee, P. Ghosh, A novel frequency encoded all optical CNOT gate exploiting difference frequency generation and implementation of fast binary adders using frequency encoding and nonlinear dielectric films. Optik Int. J. Light Electron. Opt. 121(24), 2195–2197 (2010). https://doi.org/10.1016/j.ijleo.2009.11.006

    Article  Google Scholar 

  10. W. Wu, S. Champbell, S. Zhou, P. Yeh, Polarization encoded optical logic operation in photorefractive media. Opt. Lett. 18(20), 1742–1744 (1993)

    Article  ADS  Google Scholar 

  11. M. Martinelli, P. Martinelli, S.M. Pietralunga, Polarization stabilization in optical communication system. J. Ligtwave Technol. 24, 4172 (2006)

    Article  ADS  Google Scholar 

  12. J. Zhang, H. Xu, Optical computation based on nonlinear total reflectional optical switch at the interface. Pramana 72(3), 547–554 (2009)

    Article  ADS  Google Scholar 

  13. K. Mukherjee, Implementation of a novel hybrid encoding technique and realization of all optical logic gates exploiting difference frequency generation alone. Optik 122(4), 321–323 (2011)

    Article  ADS  Google Scholar 

  14. K. Mukherjee, Implementation of hybrid encoded all optical computation using non linear material based difference frequency generation alone. Opt. Photon. Lett. 3(1), 61–71 (2010)

    Article  Google Scholar 

  15. X. Shi, Y. Guan, A method to implement optical logic AND based on FWM effect of SOA. International Conference on Mechanronics. Control and Electronic Engineering (MCE 2014)

  16. B. Ramamurthy, B. Mukherjee, Wavelength conversion in WDM networking. IEEE J. Sel. Areas Commun. 16(7), 1061–1073 (1998)

    Article  Google Scholar 

  17. H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all optical flip-flop memories. IEEE J. Quantum Electron. 39, 141–148 (2003)

    Article  ADS  Google Scholar 

  18. J.P.R. Lacey, M.A. Summerfield, S.J. Madden, Tunability of polarization—insensitive wavelength converters based on four wave mixing in semiconductor optical amplifiers. J. Ligthwave Technol. 16, 2419–2427 (1998)

    Article  ADS  Google Scholar 

  19. J. Zhou, N. Park, K.J. Vahala, M.A. Newkirk, B.I. Miller, Four-wave mixing wavelength conversion efficiency in semiconductor traveling wave amplifiers measured to 65 nm of wavelength shift. IEEE Photon. Teachnol. Lett. 6, 984–987 (1994)

    Article  ADS  Google Scholar 

  20. S. Zhang, Y. Liu, Q. Zhang, H. Li, Y. Liu, All optical sampling based on nonlinear polarization rotation in semiconductor optical amplifiers. J. Optoelectron. Biomed. Mater. 1(4), 383–388 (2009)

    Google Scholar 

  21. K. Mukherjee, Semiconductor optical amplifier based frequency encoded logic gates exploiting non-linear polarization rotation only. J. Circuit Syst. Comput. 23(09), 1450130 (2014). https://doi.org/10.1142/S0218126614501308

    Article  Google Scholar 

  22. K. Mukherjee, All optical frequency encoded combinational logic devices utilizing polarization independent four wave mixing in semiconductor optical amplifiers. J Circuit Syst. Comput. 23(09), 1450129 (2014). https://doi.org/10.1142/S0218126614501291

    Article  Google Scholar 

  23. L.Q. Guo, M.J. Connelly, Signal induced birefringence and dichroism in a tensile-strained bulk semiconductor optical amplifier and its application to wavelength conversion. J. Lightwave Technol. 23(12), 4037 (2005)

    Article  ADS  Google Scholar 

  24. K. Mukherjee, A novel frequency encoded all optical logic gates exploiting polarization insensitive four wave mixing in semiconductor optical amplifier, filtering property of ADD/DROP multiplexer and non-linearity of reflective semiconductor amplifier. Opt. Int. J. Light Electron Opt. 122, 891 (2011)

    Article  Google Scholar 

  25. P.P. Baveja, D.N. Maywar, G.P. Agrawal, Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery. IEEE J. Quantum Electron. 18(2), 899 (2012)

    Article  Google Scholar 

  26. K. Komatsu, G. Hosaya, H. Yashima, All optical logic NOR gate using a single quantum dot SOA assisted an optical filter. Opt. Quantum Electron. 50, 131 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Raja, A. & Maji, K. All-optical logic gate NAND using semiconductor optical amplifiers with simulation. J Opt 48, 357–364 (2019). https://doi.org/10.1007/s12596-019-00555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00555-9

Keywords

Navigation