Skip to main content
Log in

Revealing molecular structure of starch with Stokes-vector based second harmonic generation microscopy

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We report on the measurement and characterization of polarization properties of second harmonic (SH) light from starch granule using a Stokes vector based microscopy. The four-element Stokes parameters are the most complete description of the polarization state of SH light, including any depolarization effects. Various polarization parameters, such as the degree of polarization, the degree of linear polarization, the degree of circular polarization, as well as anisotropy are extracted by implementing a pixel by pixel image analysis from the 2D reconstructed SH Stokes images of starch granule. Furthermore, we implemented the technique by varying the polarization states of excitation light and recording the resulting Stokes parameters at micro-meter depths of resolution in order to investigate the molecular structure and orientation of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.B. Pawley, Handbook of biological confocal microscopy, 3rd edn. (Springer, Berlin, 1995)

    Book  Google Scholar 

  2. P.J. Campagnola, L.M. Loew, Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003)

    Article  Google Scholar 

  3. J. Gannaway, C.J.R. Sheppard, Opt. Quantum Electron. 10, 435–439 (1978)

    Article  Google Scholar 

  4. E. Belanger, S. Begin, S. Laffray, Y. De Koninck, R. Vallee, D. Cote, Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams. Opt. Express 17, 18419–18432 (2009)

    Article  ADS  Google Scholar 

  5. D.A. Dombeck, K.A. Kasischke, H.D. Vishwasrao et al., Uniform polarity microtubule assemblies imaged in native brain tissue by second harmonic generation microscopy. Proc. Natl. Acad. Sc. 100, 7081–7086 (2003)

    Article  ADS  Google Scholar 

  6. V. Nucciottia, C. Stringarib, L. Sacconib, et al., Probing myosin structural conformation in vivo by second-harmonic generation microscopy. Proc. Natl. Acad. Sc. 107(17), 7763–7768 (2010)

  7. T.P. Burghardt, K. Ajtai, D.K. Chan, M.F. Halstead, J. Li, Y. Zheng, GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber. Biophys. J. 93(6), 2226–2239 (2007)

    Article  ADS  Google Scholar 

  8. M.E. Quinlan, J.N. Forkey, Y.E. Goldman, Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy. Biophys. J. 89(2), 1132–1142 (2005)

    Article  Google Scholar 

  9. Y. Sun, W.L. Chen, S.J. Lin et al., Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging. Biophys. J. 91, 2620–2625 (2006)

    Article  ADS  Google Scholar 

  10. E. Ralston, B. Swaim, M. Czapiga et al., Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence. J. Struct. Biol. 162(3), 500–508 (2008)

    Article  Google Scholar 

  11. C.P. Pfeffer, B.R. Olsen, F. Ganikhanov, F. Légaré, Imaging skeletal muscle using second harmonic generation and coherent anti-Stokes Raman scattering microscopy. Biomed. Opt. Express 2(5), 1366–1376 (2011)

    Article  Google Scholar 

  12. R.M. Williams, W.R. Zipfel, W.W. Webb, Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88(2), 1377–1386 (2005)

    Article  Google Scholar 

  13. M. Han, G. Giese, J.F. Bille, Second harmonic generation imaging of collagen fibrils in cornea and sclera. Opt. Express 13, 5791–5797 (2005)

    Article  ADS  Google Scholar 

  14. P. Matteini, F. Ratto, F. Rossi et al., Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging. Opt. Express 17, 4868–4878 (2009)

    Article  ADS  Google Scholar 

  15. S.V. Plotnikov, A.C. Millard, P.J. Campagnola, W.A. Mohler, Characterization of the myosin based source for second-harmonic generation from muscle sarcomeres. Biophys. J. 90, 693–703 (2006)

    Article  ADS  Google Scholar 

  16. P.J. Campagnola, Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal. Chem. 83, 3224–3231 (2011)

    Article  Google Scholar 

  17. R. Cisek et al., Second harmonic generation mediated by aligned water in starch granules. J. Phys. Chem. B 118, 14785–14794 (2014)

    Google Scholar 

  18. N. Mazumder, L. Xiang, J. Qiu, F.J. Kao, Investigating starch gelatinization through Stokes vector resolved second harmonic generation microscopy. Sci. Rep. 7, 45816 (2017)

    Article  ADS  Google Scholar 

  19. E. Hecht, Optics, 4th edn. (Addison Wesley, Boston, 2002)

    Google Scholar 

  20. M.J. Walker, Matrix calculus and the Stokes parameters of polarized radiation. Am. J. Phys. 22, 170–174 (1954)

    Article  ADS  MATH  Google Scholar 

  21. N. Ghosh, M.F.G. Wood, I.A. Vitkin, Influcence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissue. Opt. Commun. 283, 1200–1208 (2010)

    Article  ADS  Google Scholar 

  22. N. Mazumder, J. Qiu, M.R. Foreman et al., Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter. Opt. Express 20(13), 14090–14099 (2012)

    Article  ADS  Google Scholar 

  23. N. Mazumder, J. Qiu, M.R. Foreman et al., Stokes vector based polarization resolved second harmonic microscopy of starch granules. Biomed. Opt. Express 4(4), 538–547 (2013)

    Article  Google Scholar 

  24. D. Ait-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, S. Brasselet, Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging. Opt. Express 18, 14859–14870 (2010)

    Article  ADS  Google Scholar 

  25. L. Fu, M. Gu, Polarization anisotropy in fiber-optic second harmonic generation microscopy. Opt. Express 16, 5000–5006 (2008)

    Article  ADS  Google Scholar 

  26. S.A. Mitchell, R.A. McAloney, D. Moffatt, N. Mora-Diez, M.Z. Zgierski, Second harmonic generation optical activity of a polypeptide alpha-helix at the air/water interface. J. Chem. Phys. 122, 114707 (2005)

    Article  ADS  Google Scholar 

  27. N. Mazumder, J. Qiu, C.W. Hu, F.J. Kao, Imaging molecular structure with Stokes-polarimeter based second harmonic generation microscopy, in Proceedings of SPIE (vol. 8588) 858823 (2013)

  28. R. Oldenbourg, Polarized light field microscopy: an analytical method using a microlens array to simultaneously capture both conoscopic and orthoscopic views of birefringent objects. J. Microsc. 231(3), 419–432 (2008)

    Article  MathSciNet  Google Scholar 

  29. N. Mazumder, C.W. Hu, J. Qiu et al., Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy. Methods 66, 237–245 (2014)

    Article  Google Scholar 

  30. R.M.A. Azzam, Arrangement of four photodetectors for measuring the state of polarization of light. Opt. Lett. 10, 309–311 (1985)

    Article  ADS  Google Scholar 

  31. M.R. Foreman, C.M. Romero, P. Török, A priori information and optimization in polarimetry. Opt. Express 16, 15212–15227 (2008)

    Article  ADS  Google Scholar 

  32. E. Compain, S. Poirier, B. Drevillon, General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers. Appl. Opt. 38, 3490–3502 (1999)

    Article  ADS  Google Scholar 

  33. A.D. Slepkov, A. Ridsdale, A.F. Pegoraro, D.J. Moffatt, A. Stolow, Multimodal CARS microscopy of structured carbohydrate biopolymers. Biomed. Opt. Express 1(5), 1347–1357 (2010)

    Article  Google Scholar 

  34. S. Psilodimitrakopoulos, S.I.C.O. Santos, I. Amat-Roldan et al., In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy. J. Biomed. Opt. 14, 014001 (2009)

    Article  ADS  Google Scholar 

  35. G. Cox, N. Moreno, J. Feijó, Second-harmonic imaging of plant polysaccharides. J. Biomed. Opt. 10(2), 024013 (2005)

    Article  ADS  Google Scholar 

  36. G. Mizutani, Y. Sonoda, H. Sano et al., Detection of starch granules in a living plant by optical second harmonic microscopy. J. Lumin. 87–89, 824–826 (2000)

    Article  Google Scholar 

  37. G.Y. Zhuo, H. Lee, K.J. Hsu, M.J. Huttunen, M. Kauranen, Y.Y. Lin, S.W. Chu, Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism. J. Microsc. 253(3), 183–190 (2014)

    Article  Google Scholar 

  38. D.J. Gallant, B. Bouchet, P.M. Baldwin, Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32(3–4), 177–191 (1997)

    Article  Google Scholar 

  39. T.A. Waigh, K.L. Kato, A.M. Donald et al., Side-chain liquid crystalline model for starch. Starch 52(12), 450–460 (2000)

    Article  Google Scholar 

  40. Z.Y. Zhuo, C.S. Liao, C.H. Huang et al., Second harmonic generation imaging—a new method for unraveling molecular information of starch. J. Struct. Biol. 171(1), 88–94 (2010)

    Article  Google Scholar 

  41. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, D. Artigas, Effect of molecular organization on the image histograms of polarization SHG microscopy. Biomed. Opt. Express 3(10), 2681–2693 (2012)

    Article  Google Scholar 

  42. S. Psilodimitrakopoulos, I.A. Roldan et al., Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy. J. Opt. 12, 084007 (2010)

    Article  ADS  Google Scholar 

  43. R. Cisek et al., Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration. Biomed. Opt. Express 6, 3694–3700 (2015)

    Article  Google Scholar 

  44. H. Lee, G.-Yu. Zhuo, S.-W. Chu, Second harmonic generation circular dichroism for three dimensional chirality mapping inside biological specimen, in Focus of Microscopy, Singapore (2011)

  45. Y. Miyauchi, H. Sano, G. Mizutani, Selective observation of starch in a water plant using optical sum- frequency microscopy. J. Opt. Soc. Am. A 23(7), 1687–1690 (2006)

    Article  ADS  Google Scholar 

  46. D.J. Gallant, B. Bouchet, A. Buléon, S. Pérez, Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 46(Suppl 2), S3–S16 (1992)

    Google Scholar 

  47. N. Fujita, M. Yoshida, N. Asakura, T. Ohdan, A. Miyao, H. Hirochika, Y. Nakamura, Function and characterization of starch synthase I using mutants in rice. Plant Physiol. 140(3), 1070–1084 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Matthew R. Foreman, Dr. Carlos Macías Romero and Prof. Peter Török for helping us to understand the theory of Stokes vector formalism. The authors would also like to thank the National Science Council (Grant No. NSC99-2627-M-010-002), Taiwan for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Mazumder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 615 kb)

Supplementary material 2 (GIF 608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, N., Yun-Xiang, L., Qiu, J. et al. Revealing molecular structure of starch with Stokes-vector based second harmonic generation microscopy. J Opt 47, 40–46 (2018). https://doi.org/10.1007/s12596-017-0419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-017-0419-9

Keywords

Navigation