Skip to main content
Log in

Slowing and trapping THz waves system based on plasmonic graded period grating

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Graded and partial graded period grating structures are proposed to trap and slow terahertz (THz) waves. Different frequencies of THz waves can be trapped at different positions along the graded grating. The exact trapping positions of every different frequency can be estimated from a fitting curve. The separation distance between trapping point of every 0.1 THz is about 1 ~ 2 mm, which can be applied in a THz waves spectrometer. An ultraslow THz waveguide can be realized by using a partial graded grating. The propagated speed of THz waves can be designed and tuned by adjusting the period of the grating. This structure offers the advantage of reducing the speed of the THz waves and propagation them over an ultra-wide spectral band. The physical trapping mechanism of the THz waves is attributed to the transformation from surface modes to cavity modes. The localized cavity modes at the trapping position have a saturated stable state. The extra energy will be reflected back along the graded grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  2. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  3. B. Guo, G. Song, L. Chen, Plasmonic very-small-aperture lasers. Appl. Phys. Lett. 91, 021103 (2007)

    Article  ADS  Google Scholar 

  4. B. Guo, G. Song, L. Chen, Resonant enhanced wave filter and waveguide via surface plasmons. IEEE Trans. Nanotechnol. 8, 408–411 (2009)

    Article  ADS  Google Scholar 

  5. J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)

    Article  ADS  Google Scholar 

  6. A.P. Hibbins, B.R. Evans, J.R. Sambles, Experimental verification of designer surface plasmons. Science 308, 670–672 (2005)

    Article  ADS  Google Scholar 

  7. S. Maier, S. Andrews, Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces. Appl. Phys. Lett. 88, 251120 (2006)

    Article  ADS  Google Scholar 

  8. M.B. Johnston, Plasmonics: Superfocusing of terahertz waves. Nat. Photon. 1, 14–15 (2007)

    Article  ADS  Google Scholar 

  9. D. Gacemi, J. Mangeney, R. Colombelli, A. Degiron, Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves. Nat. Sci. Rep. 3, 1369 (2013)

    ADS  Google Scholar 

  10. F. Ouellette, Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Opt. Lett. 12, 847–849 (1987)

    Article  ADS  Google Scholar 

  11. Y. Gong, L. Wang, H. Xiaohong, X. Li, X. Liu, Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide. Optics Express 17, 13727–13736 (2009)

    Article  ADS  Google Scholar 

  12. Q.Q. Gan, F.J. Bartoli, Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow-trapping like effect. Appl. Phys. Lett. 98, 251103 (2011)

    Article  ADS  Google Scholar 

  13. Y. Zhu, X. Hu, Q. Gong, Theoretical study of the all-optical tunable rainbow-trapping-like effect in chirped plasmonic slot waveguides. J. Opt. 15(035003), 3 (2013)

    Google Scholar 

  14. Y.A. Vlasov, M. O'Boyle, H.F. Hamann, S.J. McNab, Active control of slow light on a chip with photonic crystal waveguides. Nature (London) 438, 65 (2005)

    Article  ADS  Google Scholar 

  15. H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005)

    Article  ADS  Google Scholar 

  16. R.J.P. Engelen, D. Mori, T. Baba, L. Kuipers, Two regimes of slow-light losses revealed by adiabatic reduction of group velocity. Phys. Rev. Lett. 101, 103901 (2008)

    Article  ADS  Google Scholar 

  17. S.A. Maier, S.R. Andrews, L. Martin-Moreno, F.J. Garcia-Vidal, Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006)

    Article  ADS  Google Scholar 

  18. Q. Gan, Z. Fu, Y.J. Ding, F.J. Bartoli, Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys. Rev. Lett. 100, 256803 (2008)

    Article  ADS  Google Scholar 

  19. M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, R. Büttner, Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett. 77, 4049 (2000)

    Article  ADS  Google Scholar 

  20. W.L. Chan, M.L. Moravec, R.G. Baraniuk, D.M. Mittleman, Terahertz imaging with compressed sensing and phase retrieval. Optics Letters 33, 974–976 (2008)

    Article  ADS  Google Scholar 

  21. H.B. Liu, G. Plopper, S. Earley, Y.Q. Chen, B. Ferguson, X.C. Zhang, Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. Biosens. Bioelectron. 22, 1075–1080 (2007)

    Article  Google Scholar 

  22. I.A. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, Low-dispersive dielectric mirrors for future wireless terahertz communication systems. IEEE Microw. Wirel. Co. Lett. 18, 67–69 (2008)

    Article  Google Scholar 

  23. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Buttner, Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80, 154 (2002)

    Article  ADS  Google Scholar 

  24. F.J. Garcia-Vidal, L. Martin-Moreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A: Pure Appl. Opt. 7, S94 (2005)

    Article  Google Scholar 

  25. K. Zhang, D. Li, Electromagnetic, theory for microwaves and optoelectronics Springer-Verlag (Heidelberg, Berlin, 1998)

    Book  Google Scholar 

  26. Z. Ruan, M. Qiu, Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface. Appl. Phys. Lett. 90, 201906 (2007)

    Article  ADS  Google Scholar 

  27. B. Guo, G. Song, L. Chen, Numerical study of sub-wavelength plasmonic waveguide. Optics Communications 281, 1123–1128 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoshan Guo or Wei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Shi, W. & Yao, J. Slowing and trapping THz waves system based on plasmonic graded period grating. J Opt 45, 50–57 (2016). https://doi.org/10.1007/s12596-015-0262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-015-0262-9

Keywords

Navigation