Skip to main content
Log in

Antibiotic resistant bacteria in consumable fishes from Digha coast, West Bengal, India

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Antibiotic resistant bacteria from the commercial marine catch of the pelagic fishes in the Bay of Bengal at Digha coast (21°37′N, 87°33′E), West Bengal, India were evaluated. Aerobic heterotrophic and gram negative, along with the enteric bacteria were enumerated from gill and intestinal homogenates. Media supplemented with the antibiotics were used to evaluate the antibiotic resistant bacterial load. Viable counts (CFU g−1) of heterotrophic and resistant bacteria from gills were higher than those from the intestinal content. Significant variations were also noted among the percentages of bacteria (CFU) resistant to different antibiotics. High incidences of resistance to ampicillin, as well as, most sensitivity to chloramphenicol were noticed for the isolated bacterial strains. Results of the present study suggests that commercial marine fish catch at Digha coast might play a role as carrier / reservoir of antibiotic resistant bacteria creating a health risk for the fish consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, T. J., Palaniappan, R., Dhevendaran, K. 1997. Impact of antibiotics used in shrimp farms on the coastal environment. In: Proceedings of Sixth National Symposia on Environment. (Ramasamy, K., Gunathilagaraj, K., Selvasekarapandian, S., Sadasivan S. Eds.). TNAU, Coimbatore. pp. 183–185.

    Google Scholar 

  • Abraham, T. J., Barman, A., Sasmal, D., Nagesh, T. S. 2004. A survey on the use of chemicals and biological products in shrimp farms of West Bengal, India. In: All India seminar on Sustainable Aquaculture for Augmentation of Export with Special Reference to Environment, Engineering and value Addition. The Institute of Engineers (India), Kolkata. Abstract No. A33.

    Google Scholar 

  • Agerso, Y., Guardabassi, L. 2005. Identification of Tet 39, a novel class of tetracycline resistance determinant in Acinetobacter spp. of environmental and clinical origin. J Antimicrob. Chemother., 55: 566–569.

    Article  PubMed  CAS  Google Scholar 

  • Alves de Lima e Silva, A., Hofer, E. 1993. Resistance to antibiotics and heavy metals in Escherichia coli from marine fish. Environ. Toxicol. Water Qual., 8: 1–11.

    Article  CAS  Google Scholar 

  • Anderson, A. D., Nelson, J. M., Rossiter, S., Angulo, F. J. 2003. Public health consequences of use of antimicrobial agents in food animals in the United States. Microb. Drug Resist., 9: 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Angulo, F. J., Griffin, P. M. 2000. Changes in antimicrobial resistance in Salmonella enterica serovar Typhimurium. Emerg. Infect. Dis., 6: 436–438.

    Article  PubMed  CAS  Google Scholar 

  • Angulo, F. J., Nargund, V. N., Chiller, T. C. 2004. Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J. Vet. Med., 51: 374–379.

    Article  CAS  Google Scholar 

  • Aoki, T., Equasa, S. 1971. Drug sensitivity of Aeromonas liquifaciens isolated from freshwater fishes. Bull. Jpn. Soc. Sci. Fish., 37: 19–28.

    Google Scholar 

  • Aoki, T., Kitao, T., Arai, T. 1977. R plasmids in fish pathogens. In: Plasmids — Medical and Theoretical Aspects. (Mitsuhashi, S., Rosival, L., Krcmery, V. Eds.) Avicenum-Czechoslovak Medical Press: Berlin. pp. 39–45.

    Google Scholar 

  • Austin, B. 1985. Antibiotic pollution from fish farms: Effects on aquatic microflora. Microbiol. Sci., 2: 113–117.

    PubMed  CAS  Google Scholar 

  • Bauer, A. W., Kirby, W. M. M., Sherris, J. C., Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45: 493–496.

    PubMed  CAS  Google Scholar 

  • Boxall, A. B., Fogg, L. A., Blackwell, P. A., Kay, P., Pemberton, E. J., Croxford, A. 2004. Veterinary medicines in the environment. Rev. Environ. Contam. Toxicol., 180: 1–91.

    Article  PubMed  CAS  Google Scholar 

  • Burrus, V., Waldor, M. K. 2003. Control of SXT integration and excision. J. Bacteriol., 185: 5045–5054.

    Article  PubMed  CAS  Google Scholar 

  • Bushman, F. 2002a. Conjugation, transposition, and antibiotic resistance. In: Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA. pp. 27–72.

    Google Scholar 

  • Bushman, F. 2002b. Phage transduction and bacterial pathogenesis. In: Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA. pp. 73–128.

    Google Scholar 

  • Cabello, F. C. 2003. Antibiotics and aquaculture. An analysis of their potential impact upon the environment, human and animal health in Chile. Fundacion Terram. Analisis de Politicas. Publicas No. 17, pp. 1–16.

  • Casas, C., Anderson, E. C., Ojo, K. K., Keith, I., Whelan, D., Rainnie, D., Roberts, M. C. 2005. Characterization of pRAS1-like plasmids from atypical North American psychrophilic Aeromonas salmonicida. FEMS Microbiol. Lett., 242: 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. L. 1992. Epidemiology of Drug resistance: Implications for a post-antibiotic. Era. Science., 257: 1050–1063.

    CAS  Google Scholar 

  • Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399: 541–548.

    Article  PubMed  CAS  Google Scholar 

  • Gerba, C. P., McLeod, J. S. 1976. Effect of sediments on the survival of Escherichia coli in marine waters. Appl. Environ. Microbiol., 32: 114–120.

    PubMed  CAS  Google Scholar 

  • Goyal, S. M., Gerba, C. P., Melnick, J. L. 1979. R+ bacteria in estuarine sediments. Mar. Pollut. Bull., 10: 25–27.

    Article  Google Scholar 

  • Grimes, D. J., Singelton, F. L., Colwell, R. R. 1984. Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J. Appl. Bacteriol., 57: 247–261.

    PubMed  CAS  Google Scholar 

  • Guardabassi, L., Dalsgaard, A., Raffatellu, M., Olsen, J. E. 2000. Increase in the prevalence of oxolinic acid resistant Acinetobacter spp. observed in a stream receiving the effluent from a freshwater trout farm following the treatment with oxolinic acid-medicated feed. Aquaculture, 188: 205–218.

    Article  CAS  Google Scholar 

  • Hastings, P. J., Rosenberg, S. M., Slack, A. 2004. Antibioticinduced lateral transfer of antibiotic resistance. Trends Microbiol., 12: 401–404.

    Article  PubMed  CAS  Google Scholar 

  • Hektoen, H., Berge, J. A., Hormazabal, V., Yndestad, M. 1995. Persistence of antibacterial agents in marine sediments. Aquaculture, 133: 175–184.

    Article  CAS  Google Scholar 

  • Holten Lützhoft, H. C., Halling-Sørensen, B., Jørgensen, S. E. 1999. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch. Environ. Contam. Toxicol., 36: 1–6.

    Article  Google Scholar 

  • Kaspar, C. W., Burgess, J. L., Knight, Y. T., Colwell, R. R. 1990. Antibiotic resistance indexing of Escherichia coli to identify sources of fecal contamination in water. Can. J. Microbiol., 36: 891–894.

    Article  PubMed  CAS  Google Scholar 

  • Kerry, J., Coyne, R., Gilroy, D., Hiney, M., Smith, P. 1996. Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy. Aquaculture, 145: 31–39.

    Article  CAS  Google Scholar 

  • Kinnear P. R., Gray C. D. 2000. SPSS for Windows Made Simple. Release 10. Psychology Press: Sussex, UK.

    Google Scholar 

  • Kruse, H., Sørum, H. 1994. Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments. Appl. Environ. Microbiol., 60: 4015–4021.

    PubMed  CAS  Google Scholar 

  • L’Abee-Lund, T. M., Sørum, H. 2001. Class 1 integrons mediate antibiotic resistance in the fish pathogen Aeromonas salmonicida worldwide. Microb. Drug Resist., 7: 263–272.

    Article  PubMed  Google Scholar 

  • Levy, S. B. 1988. Tetracycline resistance determinants are widespread. ASM News, 54: 418–421.

    Google Scholar 

  • Levy, S. B., FitzGerald, G. B., Macone A. B. 1976. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature, 260: 40–42.

    Article  PubMed  CAS  Google Scholar 

  • Markestad, A., Grave, K. 1997. Reduction of antibacterial drug use in Norwegian fish farming due to vaccination. Fish Vaccinol., 90: 365–369.

    CAS  Google Scholar 

  • Matyar, F., Dincer, S., Kaya, A., Colak, O. 2004. Prevalence and resistance to antibiotics in Gram negative bacteria isolated from retail fish in Turkey. Ann. Microbiol., 54: 151–160.

    CAS  Google Scholar 

  • Mc Arthur, J. V., Tuckfield, R. C. 2000. Spatial patterns and antibiotic resistance among stream bacteria: effects of Industrial pollution. Appl. Environ. Microbiol., 66: 3722–3726.

    Article  CAS  Google Scholar 

  • McPhearson, R. M., DePoala, A., Zywno, S. R., Motes Jr., M. L., Guarino, A. M. 1991. Antibiotic resistance in Gramnegative bacteria from cultured catfish and aquaculture ponds. Aquaculture, 99: 203–211.

    Article  Google Scholar 

  • Miranda, C. D., Zemelman, R. 2001. Antibiotic resistant bacteria in fish from the Concepcion Bay Chile. Mar. Pollut. Bull., 11: 1096–1102.

    Article  Google Scholar 

  • Miranda, C. D., Castillo, G. 1998. Resistance to antibiotics and heavy metals of motile aeromonads from Chilean fresh water. Sci. Total Environ., 224: 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Miranda, C. D., Zemelman, R. 2002a. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture, 212: 31–47.

    Article  CAS  Google Scholar 

  • Miranda, C. D., Zemelman, R. 2002b. Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. Sci. Total Environ., 293: 207–218.

    Article  CAS  Google Scholar 

  • Nandi, S., Maurer, J. J., Hofacre, C., Summers, A. O. 2004. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci., 101: 7118–7122.

    Article  PubMed  CAS  Google Scholar 

  • Neu, H. C. 1992. The crisis in antibiotic resistance. Science, 257: 1064–1073.

    Article  PubMed  CAS  Google Scholar 

  • Ogbondeminu, F. S., Olayemi, A. B. 1993. Antibiotic resistance in enteric bacterial isolates from fish and water media. J. Aqua. Trop., 8: 207–212.

    Google Scholar 

  • Peele, E. R., Singleton, F. L., Deming, J. W., Cavari, B., Colwell, R. R. 1981. Effects of pharmaceutical wastes on microbial populations in surface water at the Puetro Rico dump site in the Atlantic Ocean. Appl. Environ. Microbiol., 41: 873–879.

    PubMed  CAS  Google Scholar 

  • Richmond, M. H. 1972. Some environmental consequences of the use of antibiotics: ‘Or whats up must come down’. J. Appl. Bacteriol., 35: 155–176.

    PubMed  CAS  Google Scholar 

  • Smith, P., Hiney, M. P., Samuelsen, O. B. 1994. Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Annu. Rev. Fish Dis., 4: 273–313.

    Article  CAS  Google Scholar 

  • Sørum, H. 2006. Antimicrobial Resistance in Bacteria of Animal Origin. In: Antimicrobial drug resistance in fish pathogens. Chapter 13 (Aarestrup, F.M. Ed.). American Society for Microbiology Press: Washington, DC, USA. pp. 213–238.

    Google Scholar 

  • Tendencia, E. A., de la Pena, L. D. 2001. Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195: 193–204.

    Article  CAS  Google Scholar 

  • Waltman, W. D., Shotts, E. B. 1986. Antimicrobial susceptibility of Edwardsiella tarda from the United States and Taiwan. Vet. Microbiol., 12: 277–282.

    Article  PubMed  CAS  Google Scholar 

  • Witte, W., 2000. Selective pressure by antibiotic use in livestock. Int. J. Antimicrob. Agents., 16:19–24.

    Article  Google Scholar 

  • Young, H. K. 1993. Antimicrobial resistance spread in aquatic environments. J. Antimicrob. Chemother., 31: 627–635.

    Article  PubMed  CAS  Google Scholar 

  • Zar, J. H. 1999. Biostatistical Analysis. 4th Edn. Pearson Education Singapore Pte. Ltd (Indian Branch): New Delhi, India. pp.663.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, K., Mandal, S. Antibiotic resistant bacteria in consumable fishes from Digha coast, West Bengal, India. Proc Zool Soc 63, 13–20 (2010). https://doi.org/10.1007/s12595-010-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-010-0002-8

Keywords

Navigation