Skip to main content
Log in

Origin of Alteration Patterns in Accessory Chromites from the Kudada Metaperidotites, East Singhbhum District (Jharkhand, India)

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

The metamorphosed ultramafic-mafic bodies of the Kudada area are located close to the Singhbhum Shear Zone (SSZ) in eastern India, where the major rock types are talc-magnesite schist and serpentinite with accessory chromite and magnetite veins. The ultramafic bodies and associated metavolcanic rocks are part of the northern extension of the Early Archean Gorumahisani greenstone belt and belong to the Iron Ore Group (IOG) supracrustal sequence. This study reveals intense compositional variability in accessory chromites of serpentinite with core composition of chromites are characterized by the variable Cr# [Cr/(Cr+Al)] = 0.53–0.82 and Mg# [Mg/(Mg+Fe2+)] = 0.01–0.17. Compositional variability on the scale of a single chromite grain occurs in the form of multi-stage zoning. To identify the patterns of compositional zoning, chromites of serpentinite are subdivided into four types depending on their grain size, reflectivity of different rims, intensity of fracture, and porosity, and supported by in-situ mineral chemistry. The type-I chromites are less fractured and non-porous variety showing the outermost chrome magnetite rim envelops the inner ferritchromit rim. Porosity is mainly developed in the type-II grains where the inner ferritchromit is formed surrounding the pore spaces. The type-III chromites are small clustered grains having ferritchromit core and chrome magnetite rim while the type-IV grains are completely altered to chrome magnetite. Textural relations and mineral chemistry indicate that metamorphism and activities of H2O and CO2-rich hydrothermal fluids during tectonic evolution of the Singhbhum Shear Zone (SSZ) might have caused these zoning patterns and compositional variabilities in accessory chromites of the Kudada area. Cation exchange between chromite and silicate minerals along with intra-grain cation diffusion within different Cr-spinel zones further intensified these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abzalov, M.Z. (1998) Chrome-spinels in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: emphasis on alteration features. Lithos, v.43, pp.109–134.

    Article  Google Scholar 

  • Adhikari A., Mukherjee S. and Vadlamani R. (2021a) A plume-mantle interaction model for the petrogenesis of komatiite-komatiitic basalt-basalt-basaltic andesite volcanism from the Paleoarchean (3.57–3.31 Ga) Iron Ore Group greenstone belts, Singhbhum craton, India: Constraints from trace element geochemistry and Sm-Nd geochronology. Lithos, v.398–399, 106315.

    Article  Google Scholar 

  • Ahmed, A.H. (2013) Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, South Eastern Desert, Egypt, a possible recycled upper mantle lithosphere. Precambrian Res., v.233, pp.173–192.

    Article  Google Scholar 

  • Alt, J.C., Shanks, W.C., Bach, W., Paulick, H., Garrido, C.J. and Beaudoin, G. (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20″ N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem. Geophys. Geosyst., v.8, Q08002.

    Article  Google Scholar 

  • Arai, S. and Miura, M. (2016) Formation and modification of chromitites in the mantle. Lithos, v.264, pp.277–295.

    Article  Google Scholar 

  • Arai, S. and Ahmed, A.H. (2018) Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic. In: Mondal, S.K. and Griffin, W.L. (Ed.), Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time. Elsevier Inc., Amsterdam, pp.139157.

    Google Scholar 

  • Bach, W., Garrido, C.J., Paulick, H., Harvey, J. and Rosner, M. (2004) Seawater peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochem. Geophys. Geosyst., v.5, Q09F26.

    Article  Google Scholar 

  • Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P. and Humphris, S.E. (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett., v.33, L13306.

    Article  Google Scholar 

  • Bandyopadhyay, N. (2003) Metamorphic history of the rocks in the southeastern sector of the Proterozoic Singhbhum shear zone and its environs. Ph.D. Thesis, University of Calcutta, Calcutta, India.

    Google Scholar 

  • Banerji, A.K. (1981) Ore genesis and its relationship to volcanism, tectonism, granitic activity, and metasomatism along the Singhbhum shear zone, Eastern India. Econ. Geol., v.76, pp.905–912.

    Article  Google Scholar 

  • Banerjee, R. and Mondal, S.K. (2020) Compositional variation and patterns of alteration in chromites of Archean komatiites from Kapili area, Gorumahisani greenstone belt, Singhbhum Craton (eastern India). International Geological Congress 2020 (IGC2020), 2–8 March, New Delhi, India, Abstract with the program.

  • Banerjee, R., Mondal, S.K., Reisberg, L. and Zhou, X. (2021) Origin of Ni-Cu-sulfide minerals in the komatiitic rock suite of the Archean Gorumahisani Greenstone belt, Singhbhum Craton (eastern India). Virtual Goldschmidt 2021 (4–9 July), Abstract with Program. doi:https://doi.org/10.7185/gold2021.3584

  • Banerjee, R., Mondal, S.K., Reisberg, L. and Park, J.-W. (2022) Fractionation of trace and platinum-group elements during metamorphism of komatiitic chromites from the early Archean Gorumahishani greenstone belt, Singhbhum Craton (eastern India). Contrib. Mineral. Petrol., v.177, doi:https://doi.org/10.1007/s00410-022-01943-4

  • Barnes, S.J. (1998) Chromite in komatiites, 1. Magmatic controls on crystallization and composition. Jour. Petrol., v.39, pp.1689–1720.

    Article  Google Scholar 

  • Barnes, S.J. (2000) Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Jour. Petrol., v.41, pp.387–409.

    Article  Google Scholar 

  • Barnes, S.J., Roeder, P.L. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. Jour. Petrol., v.42, pp.2279–2302.

    Article  Google Scholar 

  • Basu, A.R., Bandyopadhyay, P.K., Chakrabarti, R. and Zou, H. (2008) Late 3.4 Ga Algoma-type BIF in the Eastern Indian Craton. Geochim. Cosmochim. Acta, v.72, A59.

    Google Scholar 

  • Bhattacharya, H.N. and Mahapatra, S. (2008) Evolution of the Proterozoic rift margin sediments-North Singhbhum Mobile Belt, Jharkhand-Orissa, India. Precambrian Res., v.162, pp.302–316.

    Article  Google Scholar 

  • Bhattacharya, H.N., Nelson, D.R., Thern, E.R. and Altermann, W. (2015) Petrogenesis and geochronology of the Arkasani Granophyre and felsic Dalma volcanic rocks: implications for the evolution of the Proterozoic North Singhbhum Mobile Belt, east India. Geol Mag., v.152, pp.492–503.

    Article  Google Scholar 

  • Biswas, B.K. and Mondal, S.K. (2020) Patterns of alteration in chromites from ultramafic rocks of Kudada area, East Singhbhum district (Jharkhand, eastern India). International Geological Congress 2020 (IGC2020), 2–8 March, New Delhi, India, Abstract with program.

  • Bose, M.K. (2009) Precambrian mafic magmatism in the Singhbhum Craton, Eastern India. Jour. Geol. Soc. India., v.73, pp.13–35.

    Article  Google Scholar 

  • Burkhard, D.J.M. (1993) Accessory chromium spinels: their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta, v.57, pp.1297–1306.

    Article  Google Scholar 

  • Cameron, E.C. (1975) Postcumulus and subsolidus equilibration of chromite and coexisting silicates in the eastern Bushveld Complex. Geochim. Cosmochim. Acta, v.39, pp.1021–1033.

    Article  Google Scholar 

  • Chaudhuri, T., Satish-Kumar, M., Mazumder, R. and Biswas, S. (2017) Geochemistry and Sm- Nd isotopic characteristics of the Paleoarchean komatiites from Singhbhum Craton, Eastern India and their implications. Precambrian Res., v.298, pp.385–402.

    Article  Google Scholar 

  • Chaudhuri, T., Wan, Y.S., Mazumder, R., Ma, M.Z. and Liu, D.Y. (2018) Evidence of enriched, Hadean Mantle Reservoir from 4.2–4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India. Sci. Rep., v.8, pp.7069.

    Article  Google Scholar 

  • Chowdhury, S., Pal, D.C., Papineau, D. and Lentz, D.R. (2020) Major and trace element and multiple sulfur isotope composition of sulfides from the Paleoproterozoic Surda copper deposit, Singhbhum shear Zone, India: Implications for the mineralization processes. Ore Geol. Rev., v.120, 103396.

    Article  Google Scholar 

  • Colás, V., González-Jiménez, J.M., Griffin, W.L., Fanlo, I., Gervilla, F., O’Reilly, S.Y., Pearson, N.J., Kerestedjian, T. and Proenza, J.A. (2014) Fingerprints of metamorphism in chromite: new insights from minor and trace elements. Chem. Geol., v.389, pp.137–152.

    Article  Google Scholar 

  • Colás, V., González-Jiménez, J.M., Camprubí, A., Proenza, J., Griffin, W., O’Reilly, S., Fanlo, I., Gervilla, F. and González-Partida, E. (2019) A Reappraisal of the Metamorphic History of the Tehuitzingo Chromitite, Puebla State, Mexico. Int. Geol. Rev., v.61, pp.1706–1727.

    Article  Google Scholar 

  • Colás, V., Subias, I., González-Jiménez, J.M., Proenza, J., Fanlo, I., Camprubí, A., Griffin, W., Gervilla, F., O’Reilly, S. and Escayola, M. (2020) Metamorphic fingerprints of Fe-rich chromitites at Eastern Pampean Ranges. Boletin Soc. Geol. Mexic., v.72, A080420.

    Article  Google Scholar 

  • de León, A.C., Schmitt, A.K. and Weber, B. (2022) Multi-episodic formation of baddeleyite and zircon in polymetamorphic anorthosite and rutile-bearing ilmenitite from the Chiapas Massif Complex, Mexico. Jour. Metamorph. Geol., pp.1–35. https://doi.org/10.1111/jmg.12683

  • Dick, H.J.B. and Bullen, T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., v.86, pp.54–76.

    Article  Google Scholar 

  • Droop, G. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag., v.51, pp.431–435.

    Article  Google Scholar 

  • Eslami, A., Arai, S., Miura, M. and Mackizadeh, M.A. (2018) Metallogeny of the peridotite-hosted magnetite ores of the Nain ophiolite, Central Iran: Implications for Fe concentration processes during multi-episodic serpentinization. Ore Geol. Rev., v.95, pp.680–694.

    Article  Google Scholar 

  • Evans, B.W. and Frost, B.R. (1975) Chrome-spinel in progressive metamorphism-a preliminary analysis. Geochim. Cosmochim. Acta, v.39, pp.959–972.

    Article  Google Scholar 

  • Fleet, M.E., Angeli, N. and Pan, Y. (1993) Oriented chlorite lamellae in chromite from the Pedra Branca Mafic-Ultramafic Complex, Ceará, Brazil. Amer. Min., v.78(1–2), pp.68–74.

    Google Scholar 

  • Gervilla, F., Padrón-Navarta, J., Kerestedjian, T., Sergeeva, I., González-Jiménez, J. and Fanlo, I. (2012) Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contrib. Mineral. Petrol., v.164, pp.1–15.

    Article  Google Scholar 

  • Gervilla, F., Asta, M., Grolimund, D., Ferreira-Sánchez, D., Samson, V.A., Hunziker, D., Colás, V., González-Jiménez, J.M., Kerestedjian, T.N. and Sergeeva, I. (2019) Diffusion pathways of Fe2+ and Fe3+ during the formation of ferrian chromite: a µXANES study. Contrib. Mineral. Petrol., v.174, pp.65.

    Article  Google Scholar 

  • Gahlan H.A., Arai S., Ahmed A.H., Ishida Y., Abdel Aziz Y.M., Rahimi A. (2006) Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinization. Jour. Afr. Earth Sci., v.46, pp.318–330.

    Article  Google Scholar 

  • González-Jiménez, J.M., Kerestedjian, T., Proenza, J.A. and Gervilla, F. (2009) Metamorphism on chromite ores from the Dobromirtsi ultramafic massif, Rhodope Mountains (SE Bulgaria). Geol. Acta, v.7, pp.413–429.

    Google Scholar 

  • González-Jiménez, J.M., Griffin, W.L., Gervilla, F., Proenza, J.A., O’Reilly, S.Y. and Pearson, N.J. (2014) Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos, v.189, pp.140–158.

    Article  Google Scholar 

  • Irvine, T. (1967) Chromian spinel as a petrogenetic indicator: part 2. Petrologic applications. Can. Jour. Earth Sci., v.4, pp.71–103.

    Article  Google Scholar 

  • Kamenetsky, V.S., Crawford, A.J. and Meffre, S. (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Jour. Petrol., v.42, pp.655–671.

    Article  Google Scholar 

  • Mazumder, R. (2005) Proterozoic sedimentation and volcanism in the Singhbhum crustal province, India and their implications. Sediment. Geol., v.176, pp.167–193.

    Article  Google Scholar 

  • Mishra, S., Domuarari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S. and Saha, A.K. (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Res., v.93, pp.139–151.

    Article  Google Scholar 

  • Misra, S. and Johnson, P.T. (2005) Geochronological constraints on the evolution of Singhbhum Mobile Belt and associated basic volcanic of Eastern Indian Shield. Gondwana Res., v.8, pp.129–142.

    Article  Google Scholar 

  • Mondal, S.K., Baidya, T.K., Rao, K.N.G. and Glascock, M.D. (2001) PGE and Ag mineralization in Breccia zone of the Precambrian Nuasahi ultramafic-mafic complex, Orissa India. Can. Mineral., v.39, pp.979–996.

    Article  Google Scholar 

  • Mondal, S.K., Ripley, E.M., Li, C. and Frei, R. (2006) The genesis of Archean chromitites from the Nuasahi and Sukinda Massifs in the Singhbhum Craton, India. Precambrian Res., v.148, pp.45–66.

    Article  Google Scholar 

  • Mondal, S.K., Frei, R. and Ripley, E.M. (2007) Os isotope systematics of Mesoarchean chromitite PGE deposits in the Singhbhum Craton (India): implications for the evolution of lithospheric mantle. Chem. Geol., v.244, pp.391–408.

    Article  Google Scholar 

  • Mondal, S.K. (2009) Chromite and PGE deposits of Mesoarchean ultramafic-mafic suites within the greenstone belts of the Singhbhum Craton (India): implication for mantle heterogeneity and tectonic setting. Jour. Geol. Soc. India, v.73, pp.1–16.

    Article  Google Scholar 

  • Mondal, S.K., Das, E., Banerjee, R. and Reisberg, L. (2019) Trace Element in Chromites of Komatiites from the Archean Gorumahisani Greenstone Belt, Singhbhum Craton (India). Goldschmidt 2019-Barcelona (Spain), Abstract with Program.

  • Mukherjee, R., Mondal, S.K., Rosing, M.T. and Frei, R. (2010) Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implication for tectonic setting. Contrib. Mineral. Petrol., v.160, pp.865–885.

    Article  Google Scholar 

  • Mukherjee, R., Mondal, S.K., González-Jiménez, J.M., Griffin, W.L., Pearson, N.J. and O’Reilly, S.Y. (2015) Trace element fingerprints of chromite, magnetite and sulfide from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar Craton (India). Contrib. Mineral. Petrol., v.169, pp.1–23.

    Article  Google Scholar 

  • Mukherjee, R. and Mondal, S.K. (2018) Petrogenetic evolution of chromite deposits in the Archean greenstone belts of India. In: Mondal, S.K. and Griffin, W.L. (Ed.), Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time. Elsevier, Amsterdam, Oxford, Cambridge, pp. 159–195.

    Chapter  Google Scholar 

  • Mukhopadhyay, J., Beukes, N., Armstrong, R.A., Zimmermann, U., Ghosh, G. and Medda, R.A. (2008) Dating the oldest greenstone in India: a 3.51-Ga precise Pb-Pb SHRIMP zircon age for dacitic lava of the southern Iron Ore Group, Singhbhum Craton. Jour. Geol., v.116, pp.449–461.

    Article  Google Scholar 

  • Pal, D.C., Barton, M.D. and Sarangi, A.K. (2009) Deciphering a multistage history affecting U-Cu(-Fe) mineralization in the Singhbhum Shear Zone, eastern India, using pyrite textures and compositions in the Turamdih U-Cu(-Fe) deposit. Miner. Depos., v.44, pp.61–80.

    Article  Google Scholar 

  • Pal, D.C., Trumbull, R.B. and Wiedenbeck, M. (2010) Chemical and boron isotope compositions of tourmaline from the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, India: Implications for the sources and evolution of mineralizing fluids. Chem. Geol., v.277, pp.245–260.

    Article  Google Scholar 

  • Pal, D.C., Sarkar, S., Mishra, B. and Sarangi, A.K. (2011) Chemical and sulfur isotope compositions of pyrite in the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulfide mineralization. Jour. Earth Syst. Sci., v.120, pp.475–488.

    Article  Google Scholar 

  • Pal, D.C. and Rhede, D. (2013) Geochemistry and chemical dating of uraninite in the Jaduguda uranium deposit, Singhbhum shear zone, India-implications for uranium mineralization and geochemical evolution of uraninite. Econ. Geol., v.108, pp.1499–1515.

    Article  Google Scholar 

  • Proenza, J., Ortega-Gutiérrez, F., Camprubí, A., Tritlla, J., Elías-Herrera, M. and Reyes-Salas, M. (2004) Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. Am. Earth Sci., v.16, pp.649–666.

    Article  Google Scholar 

  • Roeder, P.L. and Campbell, I.H. (1985) The effect of postcumulus reactions on composition of chrome-spinels from the Jimberlana Intrusion. Jour. Petrol., v.26, pp.763–786.

    Article  Google Scholar 

  • Roeder, P.L. (1994) Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake. Can. Mineral., v.32, pp.729–746.

    Google Scholar 

  • Rollinson, H. (1995) Composition and tectonic settings of chromite deposits through time. Econ. Geol., v.90, pp.2091–2092.

    Article  Google Scholar 

  • Saha, A.K. (1959) Structural and petrological evolution of the diorites of eastern Singhbhum. Quat. Jour. Geol. Min. Metall. SW. India, v.31, pp.91–113.

    Google Scholar 

  • Saha, A.K. (1994) Crustal evolution of Singhbhum-North Orissa, eastern India. Mem. Geol. Soc. India, no.27, pp.1–341.

  • Sarkar, S.C. (1984) Geology and Ore Mineralisation of the Singhbhum Copper-Uranium Belt, Eastern India. Jadavpur University, Calcutta.

    Google Scholar 

  • Schaltegger, U. (2007) Hydrothermal zircon. Elements, v.3(1), pp.51–79.

    Article  Google Scholar 

  • Scowen, P.A.H., Roedder, P.L. and Helz, R.T. (1991) Reequilibration of chromite within Kilauea Iki lava lake, Hawaii. Contrib. Mineral. Petrol., v.107, pp.8–20.

    Article  Google Scholar 

  • Sengupta, S., Paul, D.K., Bishui, P.K., Gupta, S.N., Chakraborty, R. and Sen, P. (1994) A geochemical and Rb-Sr isotopic study of Kuilapal granite and Arkasoni granophyre from the eastern Indian craton. Indian Mineral., v.48, pp.77–88.

    Google Scholar 

  • Sengupta, N., Mukhopadhyay, D., Sengupta, P. and Hoffbauer, R. (2005) Tourmaline-bearing rocks in the Singhbhum shear zone, eastern India: Evidence of boron infiltration during regional metamorphism. Am. Mineral., V.90, pp.1241–1255.

    Article  Google Scholar 

  • Sinha, D.K., Gupta, S., Nautiyal, K., Akhila, V.R., Shrivastava, V.K., Padhi, A.K. and Verma, M.B. (2019) Serpentinized peridotite-hosted uranium mineralization (U-Cr-Ni-Mo-REE-Fe- Mg) in Kudada-Turamdih area: a new environment of metallogeny in Singhbhum shear zone, India. Curr. Sci., v.117, pp.830–838.

    Article  Google Scholar 

  • Stowe, C.W. (1994) Composition and tectonic settings of chromite deposits through time. Econ. Geol., v.89, pp.528–546.

    Article  Google Scholar 

  • Ulmer, G.C. (1974) Alteration of chromite during serpentinization in the Pennsylvania-Maryland district. Am. Mineral., v.59, pp.1236–1241.

    Google Scholar 

  • Upadhdyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K. and Berndt, J. (2014) Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite (TTG) suite from the Singhbhum craton, eastern India. Precambrian Res., v.252, pp.180–190.

    Article  Google Scholar 

  • Watson, E.B., Wark, D.A. and Thomas, J.B. (2006) Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., v.151, pp.413–433.

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Min 95:185–18.

    Article  Google Scholar 

  • Zhou M-F. and Kerrich R. (1992) Morphology and composition of chromite in komatiites from the Belingwe Greenstone Belt, Zimbabwe. Can. Mineral., v.30, pp.303–317.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the DST-PURSE-PHASE-II (Jadavpur University), MHRD-RUSA 2.0 (Jadavpur University), UGC-CAS-VI (Department of Geological Sciences, JU) and CEFIPRA-Indo-French International Collaborative Project 6007-1 to Sisir Mondal for fieldwork and analytical support. We are thankful to Dr. D.K. Sinha for encouraging us to conduct this research work. Dr. Harsh K. Gupta is acknowledged for inviting us to contribute this article to the JGSI. We thank journal reviewer V. Rajesh for his useful comments and the journal Editor-in-Chief B. Mahabaleshwar is acknowledged for efficient editorial handling of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratul Banerjee.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R., Biswas, B.K. & Mondal, S.K. Origin of Alteration Patterns in Accessory Chromites from the Kudada Metaperidotites, East Singhbhum District (Jharkhand, India). J Geol Soc India 99, 345–356 (2023). https://doi.org/10.1007/s12594-023-2317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2317-x

Navigation