Skip to main content
Log in

An Integrated Approach for Delineating and Characterizing Groundwater Depletion Hotspots in a Coastal State of India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Visualization of present state of aquifers and identification of groundwater depletion hotspots are important tools in preparing an effective groundwater management plan. Therefore, this study developed an integrated framework by bridging a number of relevant factors to characterize and visualize groundwater depletion hotspots in Andhra Pradesh, India. Firstly, the groundwater status was assessed by detecting spatio-temporal trends in groundwater levels of 429 dug well sites from 2004 to 2018 using Mann-Kendall (MK)/modified Mann-Kendal (mMK), Spearman’s Rho test, and the magnitude of the slope was determined by Sen’s slope estimator. Subsequently, multiple decision factors were considered in the analytical hierarchy process (AHP) method for producing the groundwater stress zone map. A multicollinearity test was performed prior to the incorporation of these factors in order to improve the decision-making power of the AHP method. The results of the groundwater stress zoning map showed that 19.99%, 16.93%, 24.63%, 18.86% and 19.59 % of areas were classified as low, moderate, high and very high stress zones, respectively. Results also identified the south-western parts as groundwater depletion hotspots. Furthermore, validation results using Sen’s slope map, evaluation metrics of ROC (receiver operating characteristics) and AUC (area under curve) showed that AHP method had exhibited a reliable performance with an accuracy of 76.7%. Thus, the applied integrated approach can be used to explicitly characterize groundwater status by integrating different factors. The findings of our study also would be helpful for water resources managers and planners who need to design proper and sustainable management of groundwater resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullahi, M.G. and Garba, I. (2015) Effect of rainfall on groundwater level fluctuation in Terengganu, Malaysia. Journal of Geophysics & Remote Sensing, v. 4(2), pp.142–146. doi:https://doi.org/10.4172/2169-0049.1000142.

    Article  Google Scholar 

  • Akther, H., Ahmed, M.S. and Rasheed, K.B.S. (2009) Spatial and temporal analysis of groundwater level fluctuation in Dhaka City, Bangladesh. Asian Jour. Earth Sci., v.3(4), pp.222–230.

    Google Scholar 

  • Amarasinghe, U.A., Samad, M., Anand, B.K. and Narayanamoorthy, A. (2008) Irrigation in Andhra Pradesh: Trends and Turning Points. Draft paper presented at the Strategic Analyses of the Indias National River Linking Project Regional Workshop, Hyderabad, 31 August 2008. https://hdl.handle.net/10568/24581.

  • Bhanja, S. N. and Mukherjee, A. (2019) In situ and satellite-based estimates of usable groundwater storage across India: Implications for drinking water supply and food security. Advances in Water Resources, v.126, pp.15–23.

    Article  Google Scholar 

  • Bui, D.D., Kawamura, A., Tong, T.N., Amaguchi, H. and Trinh, T.M. (2012) Aquifer system for potential groundwater resources in Hanoi, Vietnam. Hydrological Processes, v.26(6), pp.932–946. doi:https://doi.org/10.1002/hyp.8305.

    Article  Google Scholar 

  • Central Ground Water Board (CGWB). (2012) Groundwater year book-India, Central Ground Water Board, Ministry of Water Resource, Government of India.

  • Central Ground Water Board (CGWB). (2016) State Groundwater Scenario, Andhra Pradesh. Groundwater Scenario, Andhra Pradesh. Retrieved from http://cgwb.gov.in/gw_profiles/st_ap.htm.

    Google Scholar 

  • Central Ground Water Board (CGWB). (2020) Principal aquifer systems. Retrieved from http://cgwb.gov.in/gw_profiles/st_ap.htm.

  • Das, B. and Pal, S.C. (2020) Assessment of groundwater vulnerability to overexploitation using MCDA, AHP, fuzzy logic and novel ensemble models: a case study of Goghat-I and II blocks of West Bengal, India. Environmental Earth Sciences, v.79(5), pp.1–16. doi:https://doi.org/10.1007/s12665-020-8843-6.

    Article  Google Scholar 

  • Das, J. and Bhattacharya, S.K. (2018) Trend analysis of long-term climatic parameters in Dinhata of Koch Bihar district, West Bengal. Spatial Information Research, v.26(3), pp.271–280. doi:https://doi.org/10.1007/s41324-018-0173-3.

    Article  Google Scholar 

  • Das, J., Gayen, A., Saha, S. and Bhattacharya, S.K. (2017) Modelling of alternative crops suitability to tobacco based on Analytical hierarchy process in Dinhata subdivision of Koch Bihar district, West Bengal. Modeling Earth Systems and Environment, v.3(4), pp.1571–1587. doi:https://doi.org/10.1007/s40808-017-0392-y.

    Article  Google Scholar 

  • Das, J., Mandal, T. and Saha, P. (2019) Spatio-temporal trend and change point detection of winter temperature of North Bengal, India. Spatial Information Research, v.27(4), pp.411–424. doi:https://doi.org/10.1007/s41324-019-00241-9.

    Article  Google Scholar 

  • Das, J., Mandal, T., Saha, P. and Bhattacharya, S.K. (2020b) Variability and trends of rainfall using non-parametric approaches: A case study of semiarid area. Mausam, v.75(1), pp.33–44.

    Google Scholar 

  • Das, J., Rahman, A.T.M.S., Mandal, T. and Saha, P. (2020c) Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India. Environment, Development and Sustainability, pp.1–21. doi:https://doi.org/10.1007/s10668-020-00917-5.

  • Das, J., Rahman, A.T.M.S., Mandal, T. and Saha, P. (2021) Spatio-temporal characterization of rainfall in Bangladesh: an innovative trend and discrete wavelet transformation approaches. Theoretical and Applied Climatology, v.143, pp.1557–1579. doi:https://doi.org/10.1007/s00704-020-03508-6.

    Article  Google Scholar 

  • Das, J., Rahman, A.T.M.S., Mandal, T., and Saha, P. (2020a) Challenges for Sustainable Groundwater Management for Large Scale Irrigation under Changing Climate in Lower Ganga River Basin in India. Groundwater for sustainable development, v. 11, p.100449. doi:https://doi.org/10.1016/j.gsd.2020.100449.

    Article  Google Scholar 

  • Dhar, A., Sahoo, S., Dey, S. and Sahoo, M. (2014) Evaluation of recharge and groundwater dynamics of a shallow alluvial aquifer in central ganga basin, Kanpur (India). Natural resources research, v.23(4), pp.409–422. doi:https://doi.org/10.1007/s11053-014-9251-y.

    Article  Google Scholar 

  • Ghezelayagh, P., Javadi, S. and Kavousi, A. (2020) Assessment of groundwater recharge in carbonate aquifers based on a modified KARSTLOP-AHP method (case study: Dorfak region, Iran). Environ. Earth Sci., v.79(5), pp.1–11. doi:https://doi.org/10.1007/s12665-020-8829-4.

    Article  Google Scholar 

  • Hamed, K. H. and Rao, A.R. (1998) A modified Mann-Kendall trend test for autocorrelated data. Jour. Hydrol., v.204(1–4), pp.182–196.

    Article  Google Scholar 

  • Janipella, R., Quamar, R., Sanam, R., Jangam, C., Jyothi, V., Padmakar, C. and Pujari, P. R. (2020). Evaluation of Groundwater Vulnerability to Pollution using GIS Based DRASTIC Method in Koradi, India—A Case Study. Jour. Geol. Soc. India, v.96(3), pp.292–297. doi:https://doi.org/10.1007/s12594-020-1549-2.

    Article  Google Scholar 

  • Jhariya, D.C. (2019) Assessment of Groundwater Pollution Vulnerability Using GIS-Based DRASTIC Model and its Validation Using Nitrate Concentration in Tandula Watershed, Chhattisgarh. Jour. Geol. Soc. India, v.93, pp.567–573. doi:https://doi.org/10.1007/s12594-019-1218-5.

    Article  Google Scholar 

  • Jhariya, D.C., Kumar, T., Pandey, H.K., Kumar, S., Kumar, D., Gautam, A.K. and Kishore, N. (2019) Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process. Environ. Earth Sci., v.78(20), p.610. doi:https://doi.org/10.1007/s12665-019-8608-2.

    Article  Google Scholar 

  • Karunanidhi, D., Vennila, G., Suresh, M. and Karthikeyan, P. (2014) Geoelectrical Schlumberger investigation for characterizing the hydrogeological conditions using GIS in Omalur taluk, Salem District, Tamil Nadu, India. Arabian Jour. Geosci., v.7(5), pp.1791–1798.

    Article  Google Scholar 

  • Kendall, M.G. (1975) Rank correlation methods (4th edn.) Charles Griffin. San Francisco, CA, 8.

    Google Scholar 

  • Kotchoni, D.V., Vouillamoz, J.M., Lawson, F.M., Adjomayi, P., Boukari, M. and Taylor, R.G. (2019) Relationships between rainfall and groundwater recharge in seasonally humid Benin: a comparative analysis of long-term hydrographs in sedimentary and crystalline aquifers. Hydrogeol. Jour., v.27(2), pp.447–457. doi:https://doi.org/10.1007/s10040-018-1806-2.

    Article  Google Scholar 

  • Kumar, M.D., Sivamohan, M.V.K., Niranjan, V. and Bassi, N. (2011) Groundwater management in Andhra Pradesh: time to address real issues. Occasional paper, 4.

  • Machiwal, D., Islam, A. and Kamble, T. (2019) Trends and probabilistic stability index for evaluating groundwater quality: The case of quaternary alluvial and quartzite aquifer system of India. Journal of environmental management, v.237, pp.457–475. doi:https://doi.org/10.1016/j.jenvman.2019.02.071.

    Article  Google Scholar 

  • Madhnure, P. and Lavanya, B. (2021) Development of Groundwater Irrigation in Telangana State: Challenges, Management and Way Forward. Jour. Geol. Soc. India, v.97, pp.271–281. doi:https://doi.org/10.1007/s12594-021-1678-2

    Article  Google Scholar 

  • Mann, H.B. (1945) Nonparametric tests against trend. Econometrica. Jour. Economet. Soc., pp.245–259.

  • Mukherjee, I. and Singh, U.K. (2020) Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. CATENA, v.194, p.104681. doi:https://doi.org/10.1016/j.catena.2020.104681.

    Article  Google Scholar 

  • Murmu, P., Kumar, M., Lal, D., Sonker, I. and Singh, S.K. (2019) Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development, v.9, p.100239. doi:https://doi.org/10.1016/j.gsd.2019.100239.

    Article  Google Scholar 

  • Nahayo, L., Ndayisaba, F., Karamage, F., Nsengiyumva, J.B., Kalisa, E., Mind’je, R. and Li, L. (2019) Estimating landslides vulnerability in Rwanda using analytic hierarchy process and geographic information system. Integrated Environ. Assess. Managmt., v.15(3), pp.364–373.

    Article  Google Scholar 

  • Olivares, E.O., Jiménez, S.B., Torres, S.S., Enríquez, J.C., Tiefenbacher, J.P. and Takaro, T.K. (2020) A simple method to evaluate groundwater vulnerability in urbanizing agricultural regions. Jour. Environ. Managmt., v.261, p.110164. doi:https://doi.org/10.1016/j.jenvman.2020.110164.

    Article  Google Scholar 

  • Othman, A. and Abotalib, A. Z. (2019) Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: case study from Central Saudi Arabia. Environ. Earth Sci., v.78(7), p.243.

    Article  Google Scholar 

  • Ouedraogo, I., Defourny, P. and Vanclooster, M. (2016) Mapping the groundwater vulnerability for pollution at the pan African scale. Science of the Total Environment, v.544, pp.939–953. doi:https://doi.org/10.1016/j.scitotenv.2015.11.135.

    Article  Google Scholar 

  • Ozel, N., Bozdag, and Baba, A. (2019) Effect of irrigation system on groundwater resources in Harran Plain (Southeastern Turkey). Journal of Food Science and Engineering, v.9, pp.45–51. doi:https://doi.org/10.17265/2159-5828/2019.02.001.

    Google Scholar 

  • Patle, G.T., Singh, D. K., Sarangi, A., Rai, A., Khanna, M. and Sahoo, R. N. (2015) Time series analysis of groundwater levels and projection of future trend. Journal of the Geological Society of India, v.85(2), pp.232–242. doi:https://doi.org/10.1007/s12594-015-0209-4.

    Article  Google Scholar 

  • Prasuna, V., Suneetha, B., Madhavi, K., Haritha, G.S. and Murthy, G.R. (2018) Irrigation status, issues and management in Andhra Pradesh. Ground water, v.1532(1080), pp.1–42.

    Google Scholar 

  • Rahman, A.T.M.S., Ahmed, M.S., Adnan, H.M., Kamruzzaman, M., Khalek, M.A., Mazumder, Q.H. and Jahan, C.S. (2018) Modeling the changes in water balance components of the highly irrigated western part of Bangladesh. Hydrol. Earth System Sci., 22(8), pp.4213–4228.

    Article  Google Scholar 

  • Rahman, A.T.M.S., Hosono, T., Quilty, J. M., Das, J. and Basak, A. (2020) Multiscale Groundwater Level Forecasting: Coupling New Machine Learning Approaches with Wavelet Transforms. Advances in Water Resources, v.141, p.103595. doi:https://doi.org/10.1016/j.advwatres.2020.103595.

    Article  Google Scholar 

  • Reddy, M.S. and Reddy, V.R. (2010) Groundwater: Development, Degradation, and Management: A Study of Andhra Pradesh. Research Unit for Livelihoods and Natural Resources. Centre for Economic and Social Studies, Begumpet, Hyderabad-500016.

    Google Scholar 

  • Saaty, T.L. (1980) The analytical hierarchy process, planning, priority. Resource allocation. RWS publications, USA.

    Google Scholar 

  • Saaty, T.L. (2000) Fundamentals of decision making and priority theory with the analytic hierarchy process (Vol. 6). RWS publications.

  • Saha, S. (2017) Groundwater potential mapping using analytical hierarchical process: a study on Md. Bazar Block of Birbhum District, West Bengal. Spatial Information Res., v.25(4), pp.615–626.

    Article  Google Scholar 

  • Sahoo, S., Dhar, A., Kar, A. and Chakraborty, D. (2016) Index-based ground-water vulnerability mapping using quantitative parameters. Environ. Earth Sci., v.75(6), p.522. doi:https://doi.org/10.1007/s12665-016-5395-x.

    Article  Google Scholar 

  • Sen, P.K. (1968) Estimates of the regression coefficient based on Kendall’s tau. Journal of the American statistical association, v.63(324), pp.1379–1389.

    Article  Google Scholar 

  • Thakur, G.S. and Thomas, T. (2011) Analysis of groundwater levels for detection of trend in Sagar district, Madhya Pradesh. Jour. Geol. Soc. India, v.77(4), pp.303–308. doi:https://doi.org/10.1007/s12594-011-0038-z.

    Article  Google Scholar 

  • Venkatesan, G., Pitchaikani, S. and Saravanan, S. (2019) Assessment of Groundwater Vulnerability Using GIS and DRASTIC for Upper Palar River Basin, Tamil Nadu. Jour. Geol. Soc. India, v.94, pp.387–394. doi:https://doi.org/10.1007/s12594-019-1326-2.

    Article  Google Scholar 

  • Yue, S., Pilon, P. and Cavadias, G. (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Jour. Hydrol., v.259(1–4), pp.254–271. doi:https://doi.org/10.1016/S0022-1694(01)00594-7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Central Ground Water Board (CGWB), India Water Portal (IWP) and Customized Rainfall Information System, Hydromet division, IMD and ap.gov.in/portal for providing the groundwater, rainfall and cropping intensity data. Also, the authors would like to thank anonymous reviewers and editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Das.

Supplementary file for the article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, A., Das, J., Rahman, A.T.M.S. et al. An Integrated Approach for Delineating and Characterizing Groundwater Depletion Hotspots in a Coastal State of India. J Geol Soc India 97, 1429–1440 (2021). https://doi.org/10.1007/s12594-021-1883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1883-z

Navigation