Skip to main content
Log in

Seismic Experimental Sites: Challenges and Opportunities

  • Published:
Journal of the Geological Society of India

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Audet, P. (2010). Temporal variations in crustal scattering structure near Parkfield, California, using receiver functions. Bull. Seismol. Soc. Amer., v.100, pp.1356–1362.

    Article  Google Scholar 

  • Bakun, W.H. and Lindh, A.G. (1985). The Parkfield, California, earthquake prediction experiment. Science, v.229, pp.619–624.

    Article  Google Scholar 

  • Chao, K. and Peng, Z. (2009) Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22 M6.4 Chia-Yi, Taiwan earthquake. Geophys. Jour. Internat., v.179, pp.1800–1816.

    Article  Google Scholar 

  • CSES eds. (2020a) China Seismic Experimental Site: Scientific Challenges. Beijing: China Standard Press (in Chinese), to be published.

    Google Scholar 

  • CSES eds. (2020b) Annual Report of Data and Data Products (2019). Beijing: China Standard Press (in Chinese), to be published.

    Google Scholar 

  • Davis, J.F. and Somerville, P. (1982) Comparison of earthquake prediction approaches in the Tokai area of Japan and in California. Bull. Seismol. Soc. Amer., v.72, pp.S367–S392.

    Google Scholar 

  • Evans, R., Beamish, D., Crampin, S. and Ucer, S. B. (1987). The Turkish dilatancy project (TDP3): multidisciplinary studies of a potential earthquake source region. Geophys. Jour. Royal Astron. Soc., v.91, pp.265–286.

    Article  Google Scholar 

  • Fraser, L. H., Henry, H. AL, Carlyle, C. N., White, S. R., Beierkuhnlein, C., Cahill, J. F. Jr., Casper, B. B., Cleland, E., Collins, S. L., Dukes, J. S., Knapp, A. K., Lind, E., Long, R., Luo, Y., Reich, P. B., Smith, M. D., Sternberg, M. and Turkington, R. (2012). Coordinated distributed experiments: An emerging tool for testing global hypotheses in ecology and environmental science. Frontier in Ecology and Environ. Sci., v.11, pp.147–155.

    Article  Google Scholar 

  • Gupta, H. K. (2001) Short-term earthquake forecasting maybe feasible at Koyna, India. Tectonophysics, v.338, pp.353–357.

    Article  Google Scholar 

  • Gupta, H. K. (2011) Artificial water reservoir triggered earthquakes. In: Gupta, H. K. (Ed.), Encyclopedia of Solid Earth Geophysics, 2nd Edition, Amsterdam: Springer, pp.15–24.

    Chapter  Google Scholar 

  • Gupta, H. K. (2018) Reservoir triggered seismicity (RTS) at Koyna, India, over the past 50 yrs. Bull. Seismol. Soc. Amer., v.108, pp.2907–2918, doi: https://doi.org/10.1785/0120180019.

    Article  Google Scholar 

  • Hoshiba, M. (2006) Current strategy for prediction of Tokai earthquake and its recent topics. http://cais.gsi.go.jp/UJNR/6th/orally/O04_UJNR_Hoshiba.pdf, last access: July 31, 2018.

  • Mogi, K. (2004) Two grave issues concerning the expected Tokai Earthquake. Earth, Plants and Space, 56: li–lxvi. doi: https://doi.org/10.1186/BF03353074.

    Article  Google Scholar 

  • Mora, P. and Place, D. (1998) Numerical simulation of earthquake faults with gouge: toward a comprehensive explanation for the heat flow paradox. Jour. Geophys. Res., v.103, pp.21067–21089. doi: https://doi.org/10.1029/98JB01490.

    Article  Google Scholar 

  • Niu, F., Silver, P.G., Daley, T.M., Cheng, X. and Majer, E.L. (2008) Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature, v.454, pp.204–208.

    Article  Google Scholar 

  • Roeloffs, E. (2000) The Parkfield California earthquake experiment: An update in 2000. Curr. Sci., v.79, pp.1226–1236.

    Google Scholar 

  • Semenov, A. M. (1969) Variations in the travel-time of transverse and longitudal waves before violent earthquakes. Izvestia. Acad. Sci. USSR Phys. Solid Earth (Engl. Transl.), No.4, pp.245–248.

  • Stefansson, R., Bergerat, F., Bonafede, M., Boovarsson, R., Crampin, S., Einarsson, P., Feigl, K.L., Guomundsson, A., Roth, F., Sigmundsson, F. and Slunga, R. (1998) PRENLAB Final Report. Reykjavik.

  • Stefánsson, R., Bergerat, F., Bonafede, M., Boovarsson, R., Crampin, S., Feigl, K. L., Roth, F., Sigmundsson, F., Slunga, R. (2001) PRENLAB-TWO — final report. Veourstofa Islands Report.

  • Sun, Q. Z. and Wu, S. G. eds. (2007) Development of the Earthquake Monitoring and Prediction in China during 1966–2006. Beijing: Seismological Press (in Chinese), pp.490–509.

    Google Scholar 

  • Wegler, U., Nakahara, H., Sens-Schönfelder, C., Korn, M. and Shiomi, K. (2009). Sudden drop of seismic velocity after the 2004 Mw6.6 mid-Niigata earthquake, Japan, observed with passive image interferometry. Jour. Geophys. Res., v. 114, B06305, doi:https://doi.org/10.1029/2008JB005869.

    Article  Google Scholar 

  • Working Group for the Long-term Plan of Earthquake Forecast and Prediction (2010–2020) (2010). Earthquake prediction experiment site: design, performance evaluation, and implementation. Earthquake Research in China (in Chinese with English abstract), v.26, pp.1–13.

    Google Scholar 

  • Wu, Z.L., Zhang, Y. and Li, J.W. (2019) Coordinated distributed experiments (CDEs) applied to earthquake forecast test sites. In: Li, Y.G. (Ed.), Earthquake and Disaster Risk: Decade Restrospective of the Wenchuan Earthquake, Beijing. Higher Education Press and Springer Nature, Singapore, Pte. Ltd., pp.107–115.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongliang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z. Seismic Experimental Sites: Challenges and Opportunities. J Geol Soc India 95, 113–116 (2020). https://doi.org/10.1007/s12594-020-1400-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-020-1400-9

Navigation