Skip to main content
Log in

Coupled Assimilation and Fractional Crystallization (AFC) and Mantle Plume Source(s) Contribution in the Generation of Paleoproterozoic Mafic Dykes of the Eastern Dharwar Craton, Southern India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The eastern Dharwar craton (EDC) of the southern Indian Shield hosts five geochronologically distinct Paleoproterozoic mafic dyke swarms emplaced at 2.37, 2.21, 2.18, 2.08 and 1.89 Ga. Trace element geochemical data available for these dykes display the ‘arc signals’ viz., negative Nb-Ta anomalies and elevated Zr/Nb, Th/Yb and Th/Ta values, which are conventionally interpreted to represent involvement of subduction in their genesis. It is shown that these ‘arc signals’ resulted from coupled assimilation and fractional crystallization (AFC) processes that modified these mantle-derived melts. Since, mafic dykes under study are highly evolved, an attempt has been made to estimate (using PRIMELTS2.xls software) the composition of the primary magma from the most primitive sample available from the 2.21 and 2.37 Ga swarms. The mantle potential temperature derived from the estimated primary magma compositions revealed anomalously hot mantle source regions compared to the known ambient upper mantle temperatures during Paleoproterozoic, thus implying the possible involvement of thermal plumes in their genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, D., Burgess, L. and Longhi, J. (1994) An empirical thermal history of the earth’s upper mantle. Jour. Geophys. Res., v.99, pp.13835–13850.

    Article  Google Scholar 

  • Bédard, J.H. (2001) Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: a trace element modelling approach. Contrib. Mineral. Petrol., v.141, pp.747–771.

    Article  Google Scholar 

  • Biggar, G.M. (1983) Crystallization of plagioclase, augite, and olivine in synthetic systems and in tholeiites. Min. Mag., v.47, pp.161–176.

    Article  Google Scholar 

  • Cadman, A.C., Tarney, J. and Baragar, W.R.A. (1995) Nature of mantle source contributions and the role of contamination and in situ crystallization in the petrogenesis of Proterozoic mafic dykes and flood basalts Labrador. Contrib. Mineral. Petrol., v.122, pp.213–229.

    Article  Google Scholar 

  • Chadwick, B., Vasudev, V.N. and Hegde, G.V. (2000) The Dharwar craton, southern India, interpreted as the result of Late Archean oblique convergence. Precambrian Res., v.99, pp.91–111.

    Article  Google Scholar 

  • Chalapathi Rao, N.V., Dongre, A., Wu, F.Y. and Lehmann, B. (2016) A Late Cretaceous (ca. 90 Ma) kimberlite event in southern India: Implication of sub–continental lithospheric mantle evolution and diamond exploration. Gondwana Res., v.35, pp.378–389.

    Article  Google Scholar 

  • Chalapathi Rao, N.V., Wu, F.Y., Mitchell, R.H., Li, Q.L. and Lehmann, B. (2013) Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1 Ga tectonothermal event. Chem. Geol., v.353, pp.48–64.

    Article  Google Scholar 

  • Ciborowski, T.J.R., Kerr, A.C., Ernst, R.E., McDonald, I., Minifie, M.J., Harlan, S.S. and Millar, I.L. (2015) The Early Proterozoic Matachewan Large Igneous Province: Geochemistry, petrogenesis, and implications for earth evolution. Jour. Petrol., v.56, pp.1459–1494.

    Article  Google Scholar 

  • Ciborowski, T.J.R., Kerr, A.C., McDonald, I., Ernst, R.E., Hughes, H.S.R. and Minifie, M.J. (2014) The geochemistry and petrogenesis of the Paleoproterozoic du Chef dyke swarm, Québec, Canada. Precambrian Res., v.250, pp.151–166.

    Article  Google Scholar 

  • Ciborowski, T.J.R., Minifie, M.J., Kerr, A.C., Ernst, R.E., Baragar, B. and Millar, I.L. (2017) A mantle plume origin for the Paleoproterozoic Cricum–Specific Large Igneous Province. Precambrian Res., v.294, pp.189–213.

    Article  Google Scholar 

  • Condie, K.C. (1997) Sources of Proterozoic mafic dyke swarms: constraints from Th/Ta and La/Yb ratios. Precambrian Res., v.81, pp.3–14.

    Article  Google Scholar 

  • Condie, K.C. (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, v.79, pp.491–504.

    Article  Google Scholar 

  • Cribb, J.W. and Barton, M. (1996) Geochemical effects of decoupled fractional crystallization and crustal assimilation. Lithos, v.37, pp.293–307.

    Article  Google Scholar 

  • Davies, G.F. (2009) Effect of plate bending on the Urey ratio and the thermal evolution of mantle. Earth Planet Sci. Lett., v.287, pp.513–518.

    Article  Google Scholar 

  • Ellam, R.M. and Cox, K.G. (1991) An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth Planet Sci Lett., v.105, pp.330–342.

    Article  Google Scholar 

  • Ernst, R.E. and Buchan, K.L. (2001) The use of mafic dike swarms in identifying and locating mantle plumes. Geol. Soc. Am. Spec. Paper, v.352, pp.247–265.

    Google Scholar 

  • Ernst, R.E., Srivastava, R.K., Bleeker, W. and Hamilton, M.A. (2010) Precambrian large igneous provinces (LIPs) and their dyke swarms: New insights from high–precision geochronology integrated with paleomagnetism and geochemistry. Precambrian Res., v.183, pp.vii–xi. doi: 10.1016/j. precamres.2010.09.001.

  • French, J.E. and Heaman, L.M. (2010) Precise U–Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: Implications for the existence of the Neoarchean supercraton Scalvia. Precambrian Res., v.183, pp.416–441.

    Article  Google Scholar 

  • French, J.E., Heaman, L.M., Chacko, T. and Srivastava, R.K. (2008) 1891–188. Ma southern Bastar–Cuddapah mafic igneous events, India: A newly recognized large igneous province. Precambrian Res., v.160, pp.308–322.

    Google Scholar 

  • Green, D.H. and Falloon, T.J. (2005) Primary magmas at mid–ocean ridges, “hotspots”, and other intraplate settings: Constraints on mantle potential temperature. Geol. Soc. Am. Spec. Paper, v.388, pp.217–247.

    Google Scholar 

  • Halama, R., Marks, M., Brügmann, G., Siebel, W., Wenzel, T. and Markl, G. (2004) Crustal contamination of mafic magmas: evidence from a petrological, geochemical and Sr–Nd–Os–O isotopic study of the Proterozoic Isortoq dike swarm, South Greenland. Lithos, v.74, pp.199–232.

    Article  Google Scholar 

  • Halls, H.C., Kumar, A., Srinivasan, R. and Hamilton, M.A. (2007) Paleomagnetism and U–Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambrian Res., v.155, pp.47–68.

    Article  Google Scholar 

  • Hari, K.R., Swarnkar, V. and Manu Prasanth, M.P. (2018) Significance of assimilation and fractional crystallization (AFC) process in the generation of basaltic lava flows from Chhotaudepur area, Deccan Large Igneous Province, NW India. Jour. Earth Syst. Sci., v.127, p.85.

  • Hart, W.K. (1985) Chemical and isotopic evidence for mixing between depleted and enriched mantle, northwestern USA. Geochim. Cosmochim. Acta, v.49, pp.131–144.

    Article  Google Scholar 

  • Herzberg, C. and Asimow, P.D. (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem. Geophys. Geosys., v.9, Q09001.

  • Hoek, J.D. and Seitz, H.–M. (1995) Continental mafic dyke swarms as tectonic indicators: an example from the Vestfold Hills, East Antarctica. Precambrian Res., v.75, pp.121–139.

    Article  Google Scholar 

  • Khanna, T.C., Sesha Sai, V.V., Zhao, G.C., Subba Rao, D.V., Keshav Krishna, A., Sawant, S.S. and Nirmal Charan, S. (2013) Petrogenesis of mafic alkaline dikes from the ~2.18 Ga Mahbubnagar Large Igneous Province, Eastern Dharwar Craton, India: Geochemical evidence for uncontaminated intracontinental mantle derived magmatism. Lithos, v.179, pp.84–98.

    Article  Google Scholar 

  • Korenaga, J. (2008) Urey ratio and the structure and evolution of earth’s mantle. Rev. Geophys., v.46, RG2007.

  • Kumar, A., Hamilton, M.A. and Halls, H.C. (2012a) A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India. Geochem. Geophys. Geosys., v.13, Q02011.

  • Kumar, A., Nagaraju, E., Besse, J. and Bhaskar Rao, Y.J. (2012b) New age, geochemical and paleomagnetic data on 2.21 Ga dyke swarm from south India: Constraints on Paleoproterozoic reconstruction. Precambrian Res., v.220–221, pp.123–138.

    Google Scholar 

  • Kumar, A., Parashuramulu, V. and Nagaraju, E. (2015) A 2082 Ma radiating dyke swarm in the Eastern Dharwar Craton, southern India and its implications to Cuddapah basin formation. Precambrian Res., v.266, pp.490–505.

    Article  Google Scholar 

  • Lassen, B., Bridgwater, D., Bernstein, S. and Rosing, M. (2004) Assimilation and high–pressure fractional crystallization (AFC) recorded by Paleoproterozoic mafic dykes, Southeast Greenland. Lithos, v.72, pp.1–18.

    Article  Google Scholar 

  • Marsh, J.S. (1989) Geochemical constraints on coupled assimilation and fractional crystallization involving upper crustal compositions and continental tholeiitic magma. Earth Planet. Sci. Lett., v.92, pp.70–80.

    Article  Google Scholar 

  • McKenzie, D. and Bickel, M.J. (1988) The volume and composition of melt generated by extension of the lithosphere. Jour. Petrol., v.29, pp.625–679.

    Article  Google Scholar 

  • Mondal, M.E.A. and Ahmad, T. (2001) Bundelkhand mafic dykes, Central Indian Shield: Implications for the role of sediment subduction in Proterozoic crustal evolution. The Island Arc, v.10, pp.51–67.

    Article  Google Scholar 

  • Mungall, J.E. (2007) Crustal contamination of picritic magmas during transport through dikes: the Expo Intrusive suite, Cape Smith fold belt, New Québec. Jour. Petrol., v.48, pp.1021–1039.

    Article  Google Scholar 

  • Nagaraju, E., Parashuramulu, V., Kumar, A. and Srinivas Sarma, D. (2018) Paleomagnetism and geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India. Phys. Earth Planet. Inter., v.274, pp.222–231.

    Article  Google Scholar 

  • Nisbet, E.G., Cheadle, M.J., Arndt, N.T. and Bickle, M.J. (1993) Constraining the potential temperature of the Archean mantle: A review of the evidence from komatiites. Lithos, v.30, pp.291–307.

    Article  Google Scholar 

  • Pandey, B.K., Gupta, J.N., Sarma, K.J. and Sastry, C.A. (1997) Sm–Nd, Pb–Pb and Rb–Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, South India: implications for Paleoproterozoic crustal evolution of the Eastern Dharwar Craton. Precambrian Res., v.84, pp.181–196.

    Article  Google Scholar 

  • Ramakrishnan, M. and Vaidyanadhan, R. (2008) Geology of India. Geological Society of India, Bangalore, v.1, pp.556.

    Google Scholar 

  • Richter, F.M. (1988) A major change in the thermal state of the earth at the Archean–Proterozoic boundary: consequences for the nature and preservation of continental lithosphere. Jour. Petrol., pp. 39–52.

    Google Scholar 

  • Rudnick, R.L. and Fountain, D.M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys., v.33, pp.267–309.

    Article  Google Scholar 

  • Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust. In: Davis, A.M., Holland, H.D., and Turkeian, K.K. (eds.) Treatise on Geochemistry, v.1.

    Google Scholar 

  • Sparks, R.S.J. (1986) The role of crustal contamination in magma evolution through geological time. Earth Planet Sci. Lett., v.78, pp.211–223.

    Article  Google Scholar 

  • Srivastava, R.K., Jayananda, M., Gautam, G.C. and Samal, A.K. (2014a) Geochemical studies and petrogenesis of ~2.21–2.22 Ga Kunigal mafic dyke swarm (trending N–S to NNW–SSE) from eastern Dharwar craton, India: implications for Paleoproterozoic large igneous provinces and supercraton Superia. Miner. Petrol., v.108, pp.695–711.

    Article  Google Scholar 

  • Srivastava, R.K., Jayananda, M., Gautam, G.C., Gireesh, V. and Samal, A.K. (2014b) Geochemistry of an ENE–WSW to NE–SW trending ~2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: Does it represent a single magmatic event?. Chemie der Erde, v.74, pp.251–265.

    Article  Google Scholar 

  • Srivastava, R.K., Samal, A.K. and Gautam, G.C. (2014c) Geochemical characteristics and petrogenesis of four Paleoproterozoic mafic dike swarms and associated large igneous provinces from the eastern Dharwar craton, India. Int. Geol. Rev., doi:10.1080/00206814.2014.938366.

    Google Scholar 

  • Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., and Norry, M.J., (eds.) Magmatism in Ocean Basins. Geological Soc. London Spec. Publ., v.42, pp. 313–345.

    Google Scholar 

  • Wasserburg, G.T., MacDonald, G.J.F., Hoyle, F., and Fowler, W.A. (1964) Relative contributions of uranium, thorium, and potassium to heat production in the earth. Science, v.143, pp.465–467.

    Article  Google Scholar 

  • White, R. and McKenzie, D. (1989) Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Jour. Geophys. Res., v.94, pp.7685–7729.

    Article  Google Scholar 

  • Zhang, C–L., Li, Z–X., Li, X–H. and Ye, H–M. (2009) Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. Jour. Asian Earth Sci., v.35, pp.167–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chalapathi Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Chalapathi Rao, N.V. Coupled Assimilation and Fractional Crystallization (AFC) and Mantle Plume Source(s) Contribution in the Generation of Paleoproterozoic Mafic Dykes of the Eastern Dharwar Craton, Southern India. J Geol Soc India 93, 157–162 (2019). https://doi.org/10.1007/s12594-019-1144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1144-6

Navigation