Skip to main content
Log in

Analytical Protocol for U-Th-Pb Chemical Dating of Monazite using CAMECA SXFive EPMA Installed at the Mantle Petrology Laboratory, Department of Geology, Banaras Hindu University, Varanasi, India

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

Chemical Th-U-total Pb method of dating monazite by an Electron Probe Micro Analyzer (EPMA) is a well-known technique for constraining chronology of geological events. In this communication, the analytical conditions of monazite dating using SXFive EPMA recently installed at the Department of Geology, Banaras Hindu University is reported. Consistency in the geochronological data of the monazites from the geochronologically well-constrained high grade metamorphic terrain of Bundelkhand craton, north central India, confirms the reliability of the BHU-EPMA facility for the U-Th-Pb geochemical dating of monazite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cherniak, D.J., Watson, E.B., Grove, M. and Harrison, T.M. (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim. Cosmochim Acta, v.68, pp.829–840.

    Article  Google Scholar 

  • Foster, G., Parrish, R. R., Horstwood, M. S., Chenery, S., Pyle, J. and Gibson, H. D. (2004) The generation of prograde P–T–t points and paths; a textural, compositional, and chronological study of metamorphic monazite. Earth Planet. Sci. Lett., v.228(1-2), pp.125–142.

    Article  Google Scholar 

  • Jercinovic, M.J., Williams, M.L. and Lane, E.D. (2008) In-situ trace element analysis of monazite and other fine-grained accessory minerals by EPMA. Chem. Geol., v.254, pp.197–215.

    Article  Google Scholar 

  • Ludwig, K.R. (2001) User’s manual for Isoplot/ex rev. 2.49: a geochronological toolkit for Microsoft Excel. Berkeley Geochron. Center. Spec. Publ., 1a, pp.1–5.

    Google Scholar 

  • Ludwig, K.R. (2012) Isoplot 3.75: A geochronological toolkit for Microsoft Excel, Spec. Publ., no. 5, Berkeley Geochronology Center, Berkeley, California, 75p.

    Google Scholar 

  • Montel, J.M., Foret, S., Veschambre, M., Nicollet, C. and Provost, A. (1996) Electron microprobe dating of monazite. Chem. Geol., v.131, pp.37–53.

    Article  Google Scholar 

  • Pandey, R., Chalapathi Rao, N.V., Pandit, D., Sahoo, S. and Dhote, P. (2018) Imprints of modal metasomatism in the post-Deccan subcontinental lithospheric mantle: petrological evidence from an ultramafic xenolith in an Eocene lamprophyre, NW India. Geol. Soc. London Spec. Publ., v.463, pp.117–136.

    Article  Google Scholar 

  • Pant, N.C., Kundu, A., Joshi, S., Dey, A., Bhandari, A. and Joshi, A. (2009) Chemical dating of monazite: testing of an analytical protocol against independently dated standards. Indian Jour. Geosci., v.63, pp.311–318.

    Google Scholar 

  • Parrish, R.R. (1990) U-Pb dating of monazite and its application to geological problems. Can. Jour. Earth Sci., v.27, pp.1431–145.

    Article  Google Scholar 

  • Pouchou, J.L. and Pichoir, F. (1985) “PAP” phi-rho-Z procedure for improved quantitative microanalysis. In: Armstrong, J.L. (Ed.), Microbeam Analysis. San Francisco Press Inc., San Francisco, pp.104–106.

    Google Scholar 

  • Pyle, J.M. and Spear, F.S. (2003) Four generations of accessory-phase growth inlow-pressure migmatites from SW New Hampshire. Amer. Mineral., v.88(2–3), pp.338–351.

    Google Scholar 

  • Saha, L., Pant, N.C., Pati, J.K., Upadhyay, D., Berndt, J., Bhattacharya, A. and Satynarayanan, M. (2011) Neoarchean high-pressure margarite–phengitic muscovite chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite–chlorite schists from the Bundelkhand craton, north central India. Contrib. Mineral. Petrol., v.161(4), pp.511–530.

    Article  Google Scholar 

  • Sambridge, M.S. and Compston, W. (1994) Mixture modeling of multicomponent data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128:373–39.

    Google Scholar 

  • Slagstad, T. (2005) Chemical (U-Th-Pb) dating of monazite using NGU’s LEO 1450VP scanning electron microscope: Analytical protocol and examples. Norges geologiske undersøkelse Report-006, 126p.

    Google Scholar 

  • Slagstad, T. (2006) Chemical (U–Th–Pb) dating of monazite: Analytical protocol for a LEO 1450VP scanning electron microscope and examples from Rogaland and Finnmark, Norway. NGU-Bull., v.443, pp.11–18.

    Google Scholar 

  • Williams, M.L., Jercinovic, M.J. and Terry, M.P. (1999) Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories. Geology, v.27, pp.1023–1026.

    Article  Google Scholar 

  • Williams, M.L., Jercinovic, M.J., Goncalves, P. and Mahan, K. (2006) Format and philosophy for collecting, compiling and reporting microprobe monazite ages. Chem. Geol., v.225, pp.1–1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chalapathi Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Pandit, D., Arora, D. et al. Analytical Protocol for U-Th-Pb Chemical Dating of Monazite using CAMECA SXFive EPMA Installed at the Mantle Petrology Laboratory, Department of Geology, Banaras Hindu University, Varanasi, India. J Geol Soc India 93, 46–50 (2019). https://doi.org/10.1007/s12594-019-1119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1119-7

Navigation