Skip to main content
Log in

Evidence for Neoarchean basement for the Deccan Volcanic flows around Koyna-Warna region, western India: Zircon U-Pb age and Hf-isotopic results

  • Published:
Journal of the Geological Society of India

Abstract

Deep boreholes around the Koyna-Warna seismic zone in the southwestern part of the Deccan Volcanic Province (DVP) enable a rare access to the basement beneath the thick (typically 1-2 km) lava pile, the nature of which has been enigmatic for long. Utilizing the drill core from borehole KBH-1 near Rasati village, we present here in situ Laser Ablation — Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) and LA-MC (multi collector)-ICPMS zircon U-Pb age and Hf-isotopic composition for two samples along with a brief description of the petrology and geochemistry of the representative lithounits of the basement section. The KBH-1 basement section comprises predominantly grey migmatite gneisses of granodiorite, tonalite and quartz monzodiorite composition apart from minor pink monzogranite. The grey gneisses show geochemical affinity to Neoarchean Tonalite-Trondhjemite-Granodiorite (TTG) suites and modern calc-alkalic granitoids. Zircons from a granodiorite and a monzogranite samples yield consistent U-Pb ages of 2710±63 Ma and 2700±49 Ma (2σ errors). The initial 176Hf/177Hf values lie in a narrow range (0.281162 to 0.281283) corresponding to εHf(T) values of +3.7 to +8.0 indicating that the magmatic precursors of the KBH-1 gneisses represent juvenile magmatism around 2700 Ma. In terms of the composition and age, a correlation between the gneisses in the KBH-1 borehole and the Neoarchean basement gneisses of the Eastern Dharwar Craton (EDC) is emphasized arguing for the extension of the EDC to the Koyna-Warna region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, T. (2002) Correction of common Pb in U–Pb analyses that do not report 204pb. Chem. Geol. v.192, pp.59–79.

    Article  Google Scholar 

  • Babu, E.V.S.S.K., Bhaskar Rao Y.J. and Vijaya Kumar, T. (2009) In-situ U-Pb and Hf-isotopic characterization of GJ-1 zircon by Laser Ablation ICP-MS and MC-ICP-MS. ISMAS TRICON 2009 (Eds. S.K. Aggarwal et al.), pp.511–514.

    Google Scholar 

  • Baksi, A.K. (2014) The Deccan Trap–Cretaceous–Paleogene boundary connection; new 40Ar/39Ar ages and critical assessment of existing argon data pertinent to this hypothesis. Jour. Asian Earth Sci., v.84, pp.9–23.

    Article  Google Scholar 

  • Balakrishnan, S., Rajamani, V. and Hanson, G. N. (1999) U-Pb ages for zircon and Titanite from the Ramagiri area, southern India: Evidence for accretionary origin of the eastern Dharwar craton during the late Archaean. Jour. Geol., v.107, pp.69–86.

    Article  Google Scholar 

  • Barker, F. 1979. Trondhjemites: definition, environment and hypothesis of origin. In: Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp.1–12.

    Google Scholar 

  • Beane J, Turner C, Hooper P et al (1986) Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bull Volcanol., v.48 pp.61–83.

    Article  Google Scholar 

  • Bhaskar Rao, Y.J., Vijaya Kumar, T., Krishna, K.V.S.S. and Tomson, J.K. (2008) The emerging pattern of crust-formation and recycling history in the Precambrian Dharwar Craton and the Southern Granulite Terrain, southern India, constraints from recent geochronological and isotopic results. Jour. Geol. Soc. India, v.74, pp.147–168.

    Google Scholar 

  • Biswas, S.K. (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, v.135, pp.307–327.

    Article  Google Scholar 

  • Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudouli, C. (2003) Temora1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geol., v.200, pp.155–170.

    Article  Google Scholar 

  • Chadwick, B., Vasudev, V., Hegde, G.V. and Nutman, A.P. (2007) Structure and SHRIMP U/Pb zircon ages of granites adjacent to the Chitradurga schist belt: implications for Neoarchean convergence in the Dharwar craton, southern India. Jour. Geol. Soc. India, v.69, pp.5–24.

    Google Scholar 

  • Chandrasekhar, D.V., Mishra, D.C., Rao, G.V.S.P. and Rao, J.M. (2002) Gravity and magnetic signatures of volcanic plugs related to Deccan volcanism in Saurashtra, India and their physical and geochemical properties. Earth Planet. Sci. Lett., v.201, pp.277–292.

    Article  Google Scholar 

  • Chandrasekharam, D. (1985) Structure and evolution of the western continental margin of India deduced from gravity, seismic, geomagnetic and geochronological studies. Physics Earth Planet. Inter., v.41, pp.186–198.

    Article  Google Scholar 

  • Chardon, D., Jayananda, M. and Peucat, J.-J. (2011) Lateral constrictional flow of hot orogenic crust: insights from the Neoarchean of South India, geological and geophysical implications for orogenic plateaux. Geochemistry, Geophysics, Geosystems, v.12, Q02005, DOI: 10.1029/2010GC003398.

  • Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P.D. (2003) Atlas of zircon textures, in Hanchar, J.M., and Hoskin, P.W.O., eds., Zircon: Reviews in Mineralogy and Geochemistry 53: Washington, D.C. Mineral. Soc. Amer., pp.468–500.

    Google Scholar 

  • Deshmukh, S.S. (1988) Petrological variations in compound flows in Deccan Traps and their significance. In: Subbarao, K.V. (ed.) Deccan Flood Basalts. Mem. Geol. Soc. India, No.10, pp.305–319.

    Google Scholar 

  • Deshpande, A.A. and Mohan, G. (2016) Seismic evidence of crustal heterogeneity beneath the northwestern Deccan volcanic province of India from joint inversion of Rayleigh wavedispersion measurements and P receiver functions. Jour. Asian Earth Sci., v.128, pp.54–63.

    Article  Google Scholar 

  • Dessai, A.G., Markwick, A., Vaselli, O. and Downes, H. (2004) Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos, v.78, pp.263–290.

    Article  Google Scholar 

  • Duraiswami, R.A. and Karmalkar, N.R. (1996) Unusual xenolithic dyke at Mandaleshwar and its episodic nature. Gondwana Geol. Magz., v.11, pp.1–10.

    Google Scholar 

  • Friend, C.R.L. and Nutman, A.P. (1991) SHRIMP U-Pb geochronology of the Closepet granite and Peninsular Gneiss, Karnataka, south India. Jour. Geol. Soc. India, v.38, pp.357–368.

    Google Scholar 

  • Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, J.J. and O’Reilly S.Y. (2004) Archaean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Res., v.131, pp.231–282.

    Article  Google Scholar 

  • Gunnell, Y. and Fleitout, L. (1998) Shoulder uplift of the Western Ghats passive margin, India: a denudational model. Earth Surface Processes and Landforms, v.23, pp.391–404.

    Article  Google Scholar 

  • Gupta, H.K. (1992) Reservoir Induced Earthquakes. Elsevier, Amsterdam, 364p.

    Google Scholar 

  • Gupta, H.K. (2002) A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth-Science Rev., v.58, pp.279–310.

    Article  Google Scholar 

  • Gupta, H.K., Arora, K. et al. (2017) Investigations of continued reservoir triggered seismicity at Koyna, India. In: Mukherjee, S., Misra, A.A., Calve‘s, G. & Nemc¡ok, M. (Eds.), Tectonics of the Deccan Large Igneous Province. Geological Society, London, Special Publications, v.445. First published online October 24, 2016. DOI: 10.1144/SP445.11

    Google Scholar 

  • Halla, J., Jeroen van Hunen, Esa Heilimo, Pentti Hölttä (2009) Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Res., v.174, pp.155–162.

    Article  Google Scholar 

  • Halliday, A.N., Lee, D.C., Christensen, J.N., Rekhamper, M., Yi, W., Luo, X., Hall, C.M., Ballententine, C.J., and Stirling, C. (1998) Applications of multiple collector–ICPMS to cosmochemistry, geochemistry, and paleooceanography. Geochim. Cosmochim. Acta., v.62, pp.919–940.

    Article  Google Scholar 

  • Hanchar, J.M., Hoskin, P.W.O. (2003) Zircon. Reviews in Mineralogy & Geochemistry, Mineralogical Society of America and Geochemical Society, v.53, p.500

    Google Scholar 

  • Hooper, P., Widdowson, M. and Kelley, S. (2010) Tectonic setting and timing of the final Deccan flood basalt eruptions. Geology, v.38, pp.839–842.

    Article  Google Scholar 

  • Jayananda, M., Moyen, J.-F., Martin, H., Peucat, J.-J., Auvray, B. and Mahabaleswar, B. (2000) Late Archaean (2550–2520 Ma) juvenile magmatism in the eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Res., v.99, pp.225–254.

    Article  Google Scholar 

  • Jayananda, M., Peucat, J.-J., Chardon, D., Krishna Rao, B. and Corfu, F. (2013a) Neoarchean greenstone volcanism, Dharwar craton, southern India: constraints from SIMS zircon geochronology and Nd isotopes. Precambrian Res., v.227, pp.55–76. DOI: 10.1016/j.precamres.2012. 05.002.

    Article  Google Scholar 

  • Jayananda, M., Tsutsumi, Y., Miyazaki, T., Gireesh, R.V., Kapfo, K.-u, Tushipokla, Hidaka, H. and Kano, T. (2013b) Geochronological constraints on Meso-and Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India. Jour. Asian Earth Sci., v.78, pp.18–38. Doi: 10.1016/j.jseaes.2013.04.033.

    Article  Google Scholar 

  • Kaila, K.L., Murthy, P.R.K., Rao, V.K., and Kharetchko, G.E. (1981) Crustal structure from deep seismic soundings along the Koyna II (KELSILoni) profile in the Deccan trap area, India. Tectonophysics, v.73, pp.365–384.

    Article  Google Scholar 

  • Kale, V.S. (2010) The Western Ghat: the Great Escarpment of India. In: Mignon, P. (Ed.), Geomorphological Landscapes of the World. Springer, Dordrecht., pp.257–264.

    Google Scholar 

  • Keshav Krishna, A., Khanna, T.C. and Rama Mohan, K. (2016) Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry. Spectro Chimica Acta, Part B v.122, pp.165–171.

    Article  Google Scholar 

  • Kinny, P.D., and Mass, R. (2003) Lu-Hf and Sm-Nd isotope systems in zircon. In: Zircon. Hanchar, J.M. and Hoskin, P.W.O. (Eds.) Rev. Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, v.53, pp.327–341.

    Google Scholar 

  • Kosler, J. and Sylvester, P.J. (2003) Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. In zircon. Hanchar, J.M. and Hoskin, P.W.O., (Eds.) Rev. Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, v.53, pp. 243–275.

    Google Scholar 

  • Krogstad, E.J., Hanson, G.N. and Rajamani, V. (1991) U–Pb ages of zircon and sphene for two gneissic terranes adjacent to Kolar schist belt, South India: evidence for separate crustal evolution histories. Jour. Geol., v.99, pp.801–816.

    Article  Google Scholar 

  • Laurent, O., Regis Doucelance, Martin, H., Moyen, J.F. (2013) Differentiation of the late-Archaean sanukitoid series and some implications for crustal growth: Insights from geochemical modelling on the Bulai pluton, Central Limpopo Belt, South Africa. Precambrian Res., v.227, pp.186–203.

    Article  Google Scholar 

  • Ludwig, K.R. (2003) Mathematical-statistical treatment of data and errors for Th-230/U geochronology, uranium series geochemistry: Reviews in Mineralogy and Geochemistry, v.52, pp.631–656. doi: 10.2113/0520631.

    Article  Google Scholar 

  • Maibam, B., Goswami, J.N. and Srinivasan, R (2011) Pb–Pb zircon ages of Archaean metasediments and gneisses from the Dharwar craton, southern India: Implications for the antiquity of the eastern Dharwar craton. Jour. Earth System Sci., v.120, pp.643–651.

    Article  Google Scholar 

  • Martin, H., Smithies, R.H., Rapp, R., Moyen J.-F. and Champion, D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, v.79, pp.1–24.

    Article  Google Scholar 

  • Mattinson, J.M. (2013) Revolution and Evolution: 100 Years of U-Pb Geochronology. Elements, v.8, pp.53–57.

    Article  Google Scholar 

  • McDonough, W.F., and Sun, S.-S. (1995) The composition of the Earth: Chemical Geol., v.120, pp.223–253, doi:10.1016 /0009-2541 (94)00140-4.

    Article  Google Scholar 

  • Mitchell, C. and Widdowson, M. (1991) A geological map of the southern Deccan Traps, India and its structural implications. Jour. Geol. Soc. London, v.148, pp.495–505.

    Article  Google Scholar 

  • Moyen, J.F., Martin, H. (2012) Fourty years of TTG research. Lithos, v.148, pp.312–336.

    Article  Google Scholar 

  • Mukherjee, S., Misra, A.A., Calve‘s, G. and Nemc¡ok, M. (eds) (2017) Tectonics of the Deccan Large Igneous Province. Geol. Soc. London, Spec. Publ., v.445, pp.1–9.

    Article  Google Scholar 

  • Nutman, A.P., Chadwick, B., Krishna Rao, B. and Vasudev, V.N. (1996) SHRIMPU/Pb zircon ages in the Chitradurgaand Sandur Groups, and granites adjacent to the Sandur schist belt, Karnataka. Jour. Geol. Soc. India, v.47, pp.153–164.

    Google Scholar 

  • Peucat, J.J., Jayananda, M, Chardon, D, Capdevila, R, Fanning, M. M. and Paquette J.L. (2013) The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains, Precambrian Res., v.227, pp.4–28.

    Article  Google Scholar 

  • Praveen Kumar, K.A. and Mohan, G. (2014) Crustal velocity structure beneath Saurashtra, NW India, through waveform modeling: Implications for magmatic underplating. Jour. Asian Earth Sci., v.79, pp.173–181.

    Article  Google Scholar 

  • Prajapati, S., Suresh, G. and Bhattacharya, S.N. (2011) Crustal structure of the northwest Deccan Volcanic Province, India, and the adjoining continental shelf from observed surface-wave dispersion. Bull. Seismol. Soc. Amer., v.101(4), pp.1488–1495.

    Article  Google Scholar 

  • Radhakrishna, B.P. (1993) Neogene uplift and geomorphic rejuvenation of the Indian Peninsula. Curr. Sci., v.64, pp.787–793.

    Google Scholar 

  • Ranjini Ray, Shukla, A.D., Sheth, H.C., Ray, J.S., Raymond A. Duraiswami, Loyc Vanderkluysen, Rautela, C.S. and Mallik, J. (2008) Highly heterogeneous Precambrian basement under the central Deccan Traps, India: Direct evidence from xenoliths in dykes. Gondwana Res., v.13, pp.375–385.

    Article  Google Scholar 

  • Rao, K., Ravi Kumar, M. and Rastogi, B.K. (2015) Crust beneath the northwestern Deccan Volcanic Province, India: evidence for uplift and magmatic underplating. Jour. Geophys. Res., v. 120, pp.3385–3405. DOI: 10.1002/2014/B011819.

    Article  Google Scholar 

  • Rao, N.P., Roy, S. and Arora, K. (2013) Deep scientific drilling in Koyna, India–brainstorming workshop on geological investigations 19–20 March 2013. Jour. Geol. Soc. India, v.81, pp.722–723.

    Article  Google Scholar 

  • Renne, P.R., Sprain, C.J., Richards, M.A., Stephen Self, Vandeerkluysen, L. and Pande, K. (2015) State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, v.350, issue 6256, pp.76–78.

    Article  Google Scholar 

  • Roy, S., Rao, N.P., Akkiraju, V.V. et al (2013) Granitic basement below Deccan Traps Unearthed by drilling in the Koyna seismic zone, Western India. Jour. Geol. Soc. India, v.81, pp.289–290.

    Article  Google Scholar 

  • Rubatto, D., 2002, Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism: Chemical Geol., v.184, pp.123–138, doi: 10.1016 /S0009-2541 (01)00355-2.

    Article  Google Scholar 

  • Sain, K., Zelt, C.A. and Reddy, P.R. (2002) Imaging of subvolcanic mesozoics in the Saurashtra peninsula of India using travel time inversion of wideangle seismic data. Geophys. Jour. Internat. v.150, pp.820–826.

    Article  Google Scholar 

  • Schoene, B., Samperton, K.Y., Eddy, M.P., Keller, G., Adatte, T., Bowring, S.A., Khadri, S.F.R. and Gertsch, B. (2015) U-Pb geochronology of the Deccan traps and relation to the end-Cretaceous mass extinction. Science, v.347, issue 6218, pp.182–184.

    Article  Google Scholar 

  • Smithies, R.H., 2000. The Archean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett., v.182, pp.115–125.

    Article  Google Scholar 

  • Streckeisen, A. (1976) To each plutonic rock its proper name. Earth Science Reviews, v.12, pp.1–33.

    Article  Google Scholar 

  • Subbarao, K.V. and Hooper, P.R. (1988) Reconnaissance map of the Deccan Basalt Group in the Western Ghats, India. In: Subbarao, K.V. (Ed.), Deccan Flood Basalts: Mem. Geol. Soc. India, no.10, enclosure.

    Google Scholar 

  • Sukanta Dey, Jaana Halla, Matti Kurhila, Jinia Nandy, Esa Heilimo and Sayantan Pal (2017) Geochronology of Neoarchaean granitoids of the NW eastern Dharwar craton: implications for crust formation. Halla, J., Whitehouse, M. J., Ahmad, T. and Bagai, Z. (Eds.), Crust–Mantle Interactions and Granitoid Diversification: Insights from Archaean Cratons. Geol. Soc. London, Spec. Publ., v.449, pp.89–121.

    Article  Google Scholar 

  • Swami Nath, J. and Ramakrishnan, M. (Eds) (1981) Early Precambrian supracrustals of southern Karnataka. Geol. Surv. India, Mem., v.112, pp.350.

    Google Scholar 

  • Talwani, P. (1997) On the nature of reservoir-induced seismicity. Pure Appld. Geophys. v.150, pp.473–492.

    Article  Google Scholar 

  • Vijaya Kumar, T., Bhaskar Rao, Y.J., Diana Plavsa., Collins A.S., Tomson, J.K., Vijaya Gopal, B. and Babu, E.V.S.S.K. (2017) Zircon U-Pb ages and Hf isotopic systematics of charnockite gneisses from the Ediacaran-Cambrian high-grade metamorphic terrains, southern India: constraints on crust formation, recycling and Gondwana correlations. Bull. Geol. Soc. Amer., v.129, pp.625–648. Doi: 10.1130/B31474.1

    Article  Google Scholar 

  • Walker, G.P.L. (1971) Simple and compound lava flows and flood basalts. Bull. Volcanogenic, v.35, pp.1–12.

    Article  Google Scholar 

  • Walker, G.P.L. (1999) Some observations and interpretation sof the Deccan Traps. Mem. Geol. Soc. India, No.43, pp.367–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Bhaskar Rao.

Additional information

DAE-Rajaramanna Fellow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskar Rao, Y.J., Sreenivas, B., Vijaya Kumar, T. et al. Evidence for Neoarchean basement for the Deccan Volcanic flows around Koyna-Warna region, western India: Zircon U-Pb age and Hf-isotopic results. J Geol Soc India 90, 752–760 (2017). https://doi.org/10.1007/s12594-017-0787-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0787-4

Navigation