Skip to main content
Log in

Direct and inverse modeling of seawater intrusion: A perspective

  • Published:
Journal of the Geological Society of India

Abstract

Sea Water Intrusion (SWI) is one of the major hydrological problem in coastal aquifers. This global issue is aggravated by increasing demands for freshwater in coastal regions. In this paper, different approaches of modeling SWI and the parameters affecting the process of SWI are introduced. This is followed by the discussion on the numerical models to solve the complex, three dimensional (3D) groundwater and solute transport problems in coastal aquifer. The importance of considering aquifer characteristics while modeling the groundwater system for flow and solute transport is emphasized. A brief discussion on previous methodology, novelty and limitations on direct simulation of SWI are tabulated. The significant aspects to be considered while direct modeling of coastal aquifers are discussed and the recent focus of research in this area of interest are stated. In direct modeling, information on aquifer parameters are often unknown, therefore, an inverse approach is explained briefly. The previous studies relating to determistic inverse modeling for coupled groundwater flow and solute transport problems reported in literature are summarized. The insights about prior information, estimated parameter sensitivities, variances and correlations are reported. The paper identifies some of the existing gaps in the modeling of SWI based on the previous work and provides comprehensive understanding on direct and deterministic inverse SWI modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarca, E., Carrera, J., Sanchez-Vila, X. and Dentz, M. (2007) Anistropic dispersive Henry problem. Advances in Water Resources, v.30, pp.913–926.

    Article  Google Scholar 

  • Abarca, E., Karam,H., Hemond, H.F. and Harvey, C.F. (2013) Transient groundwater dynamics in a coastal aquifer: The effects of tides, the lunar cycle, and the beach profile. Water Resources Res., v.49, pp.2473–2488.

    Article  Google Scholar 

  • Andersen, P.F., Mercer, J.W. and White Jr., H.O. (1988) Numerical modeling of salt-water intrusion at Hallandale, Florida. Ground Water, v.26(5), pp.619–630.

    Article  Google Scholar 

  • Andrews, R.W. (1981) Salt-water intrusion in the Costa de Hermosillo, Mexico: A numerical analysis of the water management proposals. Ground Water, v.19(6), pp.635–647.

    Article  Google Scholar 

  • Ataie-Ashtiani, B, Volkerb, R.E. and Lockingtonb, D.A. (1999) Tidal effects on sea water intrusion in unconfined aquifers. Jour. Hydrol., v.216, pp.17–31.

    Article  Google Scholar 

  • Bakker, M. and Schaars, F. (2005) The Sea Water Intrusion (SWI) Package Manual Part I. Theory, User Manual, and Examples. Version 1.2, 37p.

    Google Scholar 

  • Bhattacharya, P., Ramanathan, A.L., Mukerjee, A.B., Bundschuh, J., Chandrasekharam, D and Keshari, A.K. (2008) Groundwater for Sustainable Development: Problems, Perspectives and Challenges. Taylor & Francis, Netherlands, 460p.

    Book  Google Scholar 

  • Camp, M.V., Mtoni, Y., Mjemah, I.C., Bakundukize, C. and Walraevens, K. (2014) Investigating seawater intrusion due to groundwater pumping with schematic model simulations: The example of the Dar es Salaam coastal aquifer in Tanzania. Jour. African Earth Sci., v.96, pp.71–78.

    Article  Google Scholar 

  • Carrera, J. (1987) State of the art of the inverse problem applied to the flow and solute transport equations. Groundwater Flow and Quality Modelling, v.224, pp.549–583.

    Google Scholar 

  • Carrera, J., Hidalgo, J.J., Slooten, L.J. and Vazquez-Sune, E. (2010) Computational and conceptual issues in the calibration of seawater intrusion models. Hydrogeol. Jour., v.18, pp.131–145.

    Article  Google Scholar 

  • Cobaner, M., Yurtal, R., Dogan, A. and Motz, L.H. (2012) Three dimensional simulation of seawater intrusion in coastal aquifers: A case study in the Goksu Deltaic Plain. Jour. Hydrol., v.464–465, pp.262–280.

    Article  Google Scholar 

  • Datta, B., Vennalakanti, H. and Dhar, A. (2009) Modeling and control of saltwater intrusion in a coastal aquifer of Andhra Pradesh, India. Jour. Hydro-environment Res., v.3, pp.148–159.

    Article  Google Scholar 

  • Dausman, A.M., Langevin, C., Bakker, M. and Schaars, F. (2010) A comparison between SWI and SEAWAT–the importance of dispersion, inversion and vertical anisotropy. 21st Salt Water Intrusion Meeting, Azores, Portugal, pp.271–274.

    Google Scholar 

  • Diersch, H.-J.G. (2002) WASY Software FEFLOW® -Finite Element Subsurface Flow & Transport Simulation System: Reference Manual. WASY Institute for Water Resources Planning and Systems Research Ltd., 292p.

    Google Scholar 

  • Ding, F., Yamashita, T., Lee, H.S. and Pan, J. (2014) A modeling study of seawater intrusion in the Liao Dong Bay coastal plain, China. Jour. Marine Sci. Tech., v.22(2), pp.103–115.

    Google Scholar 

  • Doherty, J. (2016) User Manual I and II for PEST”. 6th edition. Watermark Numerical Computing. http://www.pesthomepage.org/

    Google Scholar 

  • Dokou, Z. and Karatzas, G.P. (2012) Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach. Hydrol. Sci. Jour., v.57(5), pp.985–999.

    Article  Google Scholar 

  • Elder, J.W. (1967) Transient convection in a porous medium. Jour. Fluid Mech., v.27(3), pp.609–623.

    Article  Google Scholar 

  • Gemitzi, A. and Tolikas, D. (2007) HYDRA model: Simulation of salt intrusion in coastal aquifers using Visual Basic and GIS. Environ. Model. Software, v.22, pp.924–936.

    Article  Google Scholar 

  • Giambastiani, B.M.S., Antonellini, M., Oude Essink G.H.P. and Stuurman, R.J. (2007) Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): A numerical model. Jour. Hydrol., v.340, pp.91–104.

    Article  Google Scholar 

  • Guo, W. and Langevin, C.D. (2002) User’s Guide to SEWAT: A Computer Program for Simulation of Three-Dimensional Variable-density groundwater flow” Book 6, Chapter A7,Techniques of Water — Resources. Investigations of the U.S. Geological Survey, 77p.

    Google Scholar 

  • Gupta, D.A. and Yapa, P.N.D.D., (1982) Saltwater Encroachment in an Aquifer: A Case Study. Water Resources Res., v.18(3), pp.546–556.

    Article  Google Scholar 

  • Habel, S., Fletcher, C.H., Rotzoll, K. and El-Kadi, A.I., (2017) Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Res., v.114, pp.122–134.

    Article  Google Scholar 

  • Heiss, J. W., and H. A. Michael (2014) Saltwater-freshwater mixing dynamicsin a sandy beach aquifer over tidal, spring-neap, and seasonal cycles. Water Resources Res., v.50, pp.6747–6766.

    Article  Google Scholar 

  • Henry, H.R. (1964) Effects of dispersion on salt encroachment in coastal aquifers, In: seawater in coastal aquifers. U.S. Geological Survey, Watersupply Paper. 1613-C, pp.70–84.

    Google Scholar 

  • Iribar, V., Carrera, J., Custodio, E. and Medina, A. (1997) Inverse modelling of seawater intrusion in the Llobregat delta deep aquifer. Jour. Hydrol., v.198, pp.226–244.

    Article  Google Scholar 

  • Kaleris, V. (2006) Submarine groundwater discharge: Effects of hydrogeology and of near shore surface water bodies. Jour. Hydrol., v.325, pp.96–117.

    Article  Google Scholar 

  • Kazakis, N., Pavlou, A., Vargemezis, G., Voudouris, K.S., Soulios, G., Pliakas, F. and Tsokas, G. (2016) Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Science of the Total Environment, v.543, pp.373–387.

    Google Scholar 

  • Keidser, A. and Rosbjerg, D. (1991) A comparison of four inverse approaches to groundwater flow and transport parameter identification. Water Resources Res., v.27(9), pp.2219–2232.

    Article  Google Scholar 

  • Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B. and Simmons, C.T. (2016) Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. Jour. Hydrol., v.535, pp.235–255.

    Article  Google Scholar 

  • Kitanidis, P. K. (1995) Recent advances in geostatistical inference on hydrogeological variables. Rev. Geophysics, v.33(S2), pp.1103–1109.

    Article  Google Scholar 

  • Kopsiaftis, G., Mantoglou, A. and Giannoulopoulos, P. (2009) Variable density coastal aquifer models with application to an aquifer on Thira Island. Desalination, v.237, pp.65–80.

    Article  Google Scholar 

  • Kumar, C.P., (2001) Simulation of seawater intrusion and tidal influence” The Indian Society for Hydraulics. Jour. Hydraulic Engg., v.7(1), 11p.

    Google Scholar 

  • Lakfifi, L., Larabi, A., Bziou, M., Benbibai, M. and Lahmouri, A. (2004) Regional model for seawater intrusion in the chaouia coastal aquifer (Morocco)” 18 SWIM, Cartagena, Spain, pp.637–652.

    Google Scholar 

  • Lathashri, U.A. and Mahesha, A. (2015) Predictive simulation of seawater intrusion in a tropical coastal aquifer. Jour. Environ. Engg., ASCE, D4015001, pp.2–13.

    Google Scholar 

  • Langevin, C.D. (2003) Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida. Ground Water, v.41(6), pp.758–771.

    Article  Google Scholar 

  • Lee, C.-H. and Cheng, R.T.-S. (1974) On seawater encroachment in coastal aquifers” Water Resources Res., v.10(5), pp.1039–1043.

    Article  Google Scholar 

  • Lin, H-C.J., Richards, D.R., Talbot, C.A., Yeh, G-T., Cheng, J-R., Cheng, HP., and Jones, N.L. (1997) FEMWATER-A three-dimensional finite element computer model for simulating density-dependent flow and transport in variable saturated media: Version 3.0. U.S Army Engineer Research and Development Center, Vicksburg, Miss, 143p.

    Google Scholar 

  • Lu, W., Yang, Q., Martin, J.D. and Juncosa, R. (2013) Numerical modelling of seawater intrusion in Shenzhen (China) using a 3D density-dependent model including tidal effects” Jour. Earth Syst. Sci., v.122(2), pp.451–465.

    Article  Google Scholar 

  • Mayer, A.S. and Huang, C., (1999) Development and application of a coupledprocess parameter inversion model based on the maximum likelihood estimation method. Advances in Water Resources, v.22(8), pp.841–853.

    Article  Google Scholar 

  • McLaughlin, D. and Townley, L.R. (1996) A reassessment of the groundwater inverse problem”. Water Resources Res., v.32(5), pp.1131–1161.

    Article  Google Scholar 

  • Medina, A. and Carrera, J. (1996) Coupled estimation of flow and solute transport parameters. Water Resources Res., v.32(10), pp.3063–3076.

    Article  Google Scholar 

  • Misut, P.E. and Voss, C.I. (2007) Freshwater–saltwater transition zone movement during aquifer storage and recovery cycles in Brooklyn and Queens, New York City, USA. Jour. Hydrol., v.337, pp.87–103.

    Article  Google Scholar 

  • Mollema, P.N. and Antonellini, M. (2013) Seasonal variation in natural recharge of coastal aquifer. Hydrogeol. Jour., v.21, pp.787–797.

    Article  Google Scholar 

  • Narayan, K.A., Schleeberger, C. and Bristow, K.L. (2007) Modeling seawater intrusion in the Burdekin Delta Irrigation Area, North Queensland, Australia. Agricultural Water Management, v.89, pp.217–228.

    Article  Google Scholar 

  • Oude Essink, G.H.P. and Boekelman, R.H. (1996) Problems with large-scale modeling of salt water intrusion in 3D. 14th Salt Water Intrusion Meeting, Malmo, pp.1–16

    Google Scholar 

  • Oude Essink, G.H.P. (1998) MOC3D adapted to simulate 3D density-dependent groundwater flow. Modflow’98 Conference, Golden, Colorado, USA, pp.291–303.

    Google Scholar 

  • Oude Essink, G.H.P. (2001) Salt water intrusion in a three-dimensional groundwater system in the Netherlands: A numerical study. Transport in Porous Media, v.43, pp.137–158.

    Article  Google Scholar 

  • Paniconi, C., Khlaifi, I., Lecca, G., Giacomelli, A. and Tarhouni, J. (2001) A modelling study of seawater intrusion in the Korba coastal plain, Tunisia. Phys. Chem. Earth (B), v.26(4), pp.345–351.

    Article  Google Scholar 

  • Poeter, E.P., Hill, M.C., Banta, E.R., Mehl, S. and Christensen, S. (2005) UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation, Reston, USA: US Geological Survey Techniques and Methods 6–A11, 283p.

    Google Scholar 

  • Post, V.E.A., Groen, J., Kooi, H., Person, M., Ge, S. and Edmunds, W.M., (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature, v.504, pp.71–78.

    Article  Google Scholar 

  • Qahman, K and Larabi, A. (2006) Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine). Hydrogeol. Jour., v.14, pp.713–728.

    Article  Google Scholar 

  • Ranjan, S.P., Kazama, S. and Sawamoto, M. (2006) Effects of climate and land use changes on groundwater resources in coastal aquifers. Jour. Environ. Managt., v.80, pp.25–35.

    Article  Google Scholar 

  • Robinson, G., Hamill, G.A. and Ahmed, A.A. (2015) Automated image analysis for experimental investigations of salt water intrusion in coastal aquifers. Jour. Hydrol., v.530, pp.350–360.

    Article  Google Scholar 

  • Rooy, D.V., Keidser, A. and Rosbjerg, D. (1989) Inverse modelling of flow and transport. Groundwater Contamination. IAHS Publ. no.185, pp.11–23.

    Google Scholar 

  • Sanford, W.E. and Pope, J.P. (2010) Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA. Hydrogeol. Jour., v.18, pp.73–93.

    Article  Google Scholar 

  • Sanz, E. and Voss, C.I. (2006) Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem. Advances in Water Resources, v.29(3), pp.439–457.

    Article  Google Scholar 

  • Shammas, M.I. and Thunvik, R. (2009) Predictive simulation of flow and solute transport for managing the Salalah coastal aquifer, Oman. Water Resources Management, v.23(3), pp.2941–2963.

    Article  Google Scholar 

  • Sherif, M., Sefelnasr, A. and Javadi, A. (2012) Incorporating the concept of equivalent freshwater head in successive horizontal simulations of seawater intrusion in the Nile Delta aquifer, Egypt. Jour. Hydrol., v.464–465, pp.186–198.

    Article  Google Scholar 

  • Sonnenborg, T.O., Engesgaard, P. and Rosbjerg, D. (1996) Contaminant transport at a waste residual deposit. 1. Inverse flow and nonreactive transport modeling. Water Resources Res., v.32(4), pp.925–938.

    Google Scholar 

  • Strecker, E.W. and Chu, W-S. (1986) Parameter identification of a groundwater contaminant transport model. Ground Water, v.24(1), pp.56–62.

    Article  Google Scholar 

  • Underwood, M.R., Peterson, F.L.,Voss, C.L.(1992) Groundwater tens dynamics of atoll islands. Water Resource Res., v.28(11), pp.2889–2902.

    Article  Google Scholar 

  • Violette, S., Boulicot, G. and Gorelick, S.M. (2009) Tsunami-induced groundwater salinization in SE India. C.R. Geoscience, v.341, pp.339–346.

    Article  Google Scholar 

  • Voss, C. I. and Provost, A. M. (2010) SUTRA: A model for saturatedunsaturated variable density ground-water flow with solute or energy transport. Version 2.2, U.S. Geol. Surv, Water Resources Investigation Report, 02-4231, 250p.

    Google Scholar 

  • Voss, C.I. and Souza, W.R., (1987) Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resources Res., v.23(10), pp.1851–1866.

    Article  Google Scholar 

  • Wagner, B.J. (1992) Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modeling. Jour. Hydrol., v.135, pp.402–416.

    Article  Google Scholar 

  • Werner, A.D., Bakker, M., Post, V.E.A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T. and Barry, D.A. (2013) Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, v.51, pp.3–26.

    Article  Google Scholar 

  • Xiang, Y., Sykes, J.F. and Thomson, N.R. (1992) A composite L1 parameter estimator for model fitting in groundwater flow and solute transport simulation. Water Resources Research, v.29(6), pp.1661–1673.

    Article  Google Scholar 

  • Xue, Y., Xie, C., Wu, J., Liu, P., Wang, J. and Jiang, Q. (1995) A threedimensional miscible transport model for seawater intrusion in China. Water Resources Res., v.31(4), pp.903–912.

    Article  Google Scholar 

  • Yeh, W.W-G. (1986) Review of parameter identification procedures in groundwater hydrology: The inverse problem. Water Resources Res., v.22(2), pp.95–108.

    Article  Google Scholar 

  • Zhang, Q., Volker, R.E. and Lockington, D.A. (2004) Numerical investigation of seawater intrusion at Gooburrum, Bundaberg, Queensland, Australia. Hydrogeol. Jour., v.12, pp.674–687.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.N. Priyanka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, B., Mohan Kumar, M. Direct and inverse modeling of seawater intrusion: A perspective. J Geol Soc India 90, 595–601 (2017). https://doi.org/10.1007/s12594-017-0757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0757-x

Navigation