Skip to main content
Log in

Statistical and analytical evaluation of groundwater quality of Tirupati area, Chittoor district, Andhra Pradesh, South India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The multivariate statistical analysis, hydrogeochemical modelling using visual MINTEQ software, indices of base exchange and Gibbs ratio were simultaneously applied to groundwater hydrochemical data of the Tirupati area. These techniques were applied to know the principal processes controlling the water chemistry. Fifty groundwater samples were analyzed for pH, electrical conductivity (EC), Ca, Mg, Na, K, HCO3, CO3, Cl, and SO4. The results showed that the abundance of the major ions in the water samples is in following order: Na > Ca > Mg > K and HCO3 > Cl > SO4 > CO3 > F. From this study, it is clear that there are five main processes that are responsible for this hydrochemistry namely: (1) weathering of silicate minerals, (2) dissolution of chloride salts, (3) Ion exchange between (sodium, potassium) and (calcium, magnesium) during the infiltration of reclaimed water, (4) precipitation of carbonate minerals and (5) anthropogenic activities (agricultural activities such as irrigation practices and fertilizers). Further, this study clearly demonstrates that the multivariate statistical techniques are potential tools and provide with greater precision clues to the processes that control water chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aelion, C. and Conte, B.C (2004) Susceptibility of residential wells to VOC and nitrate contamination. Environ. Sci. Tech., v.38(6), pp.1648–1653.

    Article  Google Scholar 

  • Aiman, A.L. and Mohamed El Kashouty (2010) Groundwater investigation in Awlad Salameh, Southern Sohag, Upper Egypt. Earth Sci. Res. Jour., v.14(1), pp.63–75.

    Google Scholar 

  • Akoteyon, I.S. (2013) Characterization of groundwater hydrochemistry and quality assessment in etiosa, lagos-nigeria. Ethiopian Jour. Environ. Studies Managmt., v.6(2), pp.201–214.

    Google Scholar 

  • Allison, G.D., Brown, D.S. and Novo-Gradac, K.J. (1991) MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems, Version 3.0 Users manual. US Environmental Protection Agency, Athens (EPA/600/3-91/ 021).

    Google Scholar 

  • Andre, L., Franceschi, M., Pouchan, P. and Atteia, O. (2005) Using geochemical data and modeling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Jour. Hydrol., v.305, pp.40–62.

    Article  Google Scholar 

  • Antonellini, M., Mollema, P., Giambastiani, B., Bishop, K., Caruso, L., Minchio, A., Pellegrini, L., Sabia, M., Ulazzi, E. and Gabbianelli, G. (2008) Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy. Hydrogeol. Jour., v.16, pp.1541–1556. DOI 10.1007/s10040 008 0319 9.

    Article  Google Scholar 

  • APHA (2000), Standard methods of chemical analysis of water and wastewater. American Public Health Association (APHA), 21st edition, Washington, DC.

    Google Scholar 

  • Appelo, C.A.J. and Postma, D. (1993) Geochemistry, groundwater and pollution: Balkema, Rotterdam, 536p.

    Google Scholar 

  • Ayers, R.S. and Westcot, D.W. (1985) Water quality for agriculture, irrigation and drainage. Paper No. 29. FAO Irrigation and Drainage Paper, No.29, Rev. 1, pp.1–117.

    Google Scholar 

  • Belkhiri, L., Boudoukha, A. and Mouni, L. (2010) A multivariate Statistical Analysis of Groundwater Chemistry Data. Internat. Jour. Environ. Res., v.5(2), pp.537–544.

    Google Scholar 

  • Cattell, R.B. (1966) The scree test for the number of factors. Multivariate behavioral research. v.1(2), pp.245–276.

    Article  Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R. and Savard, M.M. (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Jour. Hydrol., v.353(3-4), pp.294–313.

    Article  Google Scholar 

  • Davis, J.C. (2002) Statistics and data analysis in Geology. John Wiley and Sons, Inc. New York, 656p.

    Google Scholar 

  • Davis, S.N. and Dewest, R.J. (1966) Hydrogeology. John Wiley and Sons, Inc. New York, 463p.

    Google Scholar 

  • Dhakate, R., Mahesh, J., Sankaran, S. and Gurunadha Rao, V.V.S. (2013) Multivariate statistical analysis for assessment of groundwater quality in Talcher Coalfield Area, Odisha. Jour. Geol. Soc. India, v.82(4), pp.403–412.

    Article  Google Scholar 

  • DNHW, (1978) Department of National Health And Welfare (Canada). Guidelines for Canadian Drinking Water Quality. Supporting Documentation, Ottawa.

    Google Scholar 

  • Drever, J. I. (1997) The geochemistry of natural waters. 3rd edition, Prentice Hall, New Jersey. 436p.

    Google Scholar 

  • Gibbs, R.J. (1970) Mechanisms controlling world water chemistry. Science, v.170, pp.1081–1090.

    Article  Google Scholar 

  • Golzar Hossain, M.D., Selim Reza, A.H.M., Lutfun-Nessa, M.S.T. and Ahmed, S.S. (2013) Factor and cluster analysis of water quality Data of the groundwater wells of Kushtia, Bangladesh, Implication for arsenic enrichment and mobilization. Jour. Geol. Soc. India, v.81(3), pp.377–384.

    Article  Google Scholar 

  • Guler, C., Thyne, G.D., Mccray, J.E. and Turner, A.K. (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. Jour., v.10 (4), pp.455–474.

    Article  Google Scholar 

  • Gustafsson, G.P. (2012) Visual MINTEQ, ver 3.00. Royal Institute of Technology, Stockholm, Sweden, Department of Land and Water Resources Engineering /http,//hem.bredband.net/ b108693S. Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2.

    Google Scholar 

  • Han, G. and Liu, C.Q. (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karstdominated terrain, Guizhou province, China. Chem. Geol., v.204, pp.1–21.

    Article  Google Scholar 

  • Herbel, M.J. and Spalding, R.F. (1993) Vadose zone fertilizerderived nitrate and d15N extracts. Ground Water, v.31, pp.376–382.

    Article  Google Scholar 

  • Jackson, J.E. (1991) A User’s guide to principal components. John Wiley and Sons, Inc., New York, N.Y., 592 p.

    Book  Google Scholar 

  • Jalali, M. (2007) Assessment of the chemical components of Famenin groundwater, western Iran. Environ. Geochem. and Health, v.29(5), pp.357–374.

    Article  Google Scholar 

  • Jalali, M. (2009) Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran. Environ. Geol., v.56 (7), pp.1479–1488.

    Article  Google Scholar 

  • Janardhana Raju, N. and Krishna Reddy, T V. (2006) Urban development and the Looming water crisis- A case study from Tirupati, South India. IAEG, Geol. Soc. London, Paper No.55, pp.1–5.

    Google Scholar 

  • Kaitantzian, A., Kelepertzis, E. and Kelepertsis, A. (2013) Evaluation of the sources of contamination in the suburban area of Koropi–Markopoulo, Athens, Greece. Bull. Environ. Contam. Toxicol., v.91(1), pp.23–28.

    Article  Google Scholar 

  • Kazi, T.C., Arain, M.B., Jamali, M.K., Jalbani, N., Afridi, H.I., Sarfraz, R.A., Baig, J.A. and Shah, A.Q. (2009) Assessment of water quality of polluted lake using multivariate statistical techniques, A case study. Ecotoxic. Environ. Safety, v.72(2), pp.301–309.

    Article  Google Scholar 

  • Liu, A., Ming, J. and Ankumah, R.O. (2005) Nitrate contamination in private wells in rural Alabama United States, Science of Total Environ., v.346(1-3), pp.112–120.

    Article  Google Scholar 

  • Liu, C.W., Lin, K.H. and Kuo, Y. M. (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of Total Environ., v.313(1-3), pp.77–89.

    Article  Google Scholar 

  • Machado, C.J.F., Santiago, M.M.F., Frischkorn, H. and Filho, J.M. (2008) Clustering of groundwaters by Q-mode factor analysis according to their hydrogeochemical origin, a case study of the Cariri Valley (Northern Brazil) wells. Water SA, v.34(5), pp.651–656.

    Google Scholar 

  • Mathur, R., Suthar, A. K., Sharma, R., Sharma, A. and Sharma, S. (2010) Assessment of ground water quality of Rajasthan with special reference to Jodhpur and Barmer region. Internat. Jour. Chem. Sci., v.8(3), pp.1992–1998

    Google Scholar 

  • Meglen, R.R. (1992) Examining large databases, a chemometric approach using principal component analysis. Marine Chem., v.39(1-3), pp.217–237.

    Article  Google Scholar 

  • Mishra. U. K., Tripathi, A.K., Tiwari, S. and Mishra, A. (2012) Assessment of quality and pollution potential of groundwater around Dabhaura Area, Rewa District, Madhya Pradesh. Earth Sci. Res. Canada, v.1(2), pp.249–261.

    Google Scholar 

  • Mitra, B. K., Sasaki, C., Enari, K., Matsuyama, N. and Fujita, M. (2007) Suitability assessment of shallow groundwater for agriculture in sand dune area of northwest Honshu Island, Applied Ecol. Environ. Res., v.5(1), pp.177–188.

    Google Scholar 

  • Nagaraju, A., Sunil Kumar, K. and Thejaswi, A. (2014) Assessment of groundwater quality for irrigation, a case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India. Applied Water Science, v.4, pp.385–396.

    Article  Google Scholar 

  • Nagaraju, A., Thejaswi, A. and Sun, L. (2016). Statistical analysis of high fluoride groundwater hydrochemistry in Southern India: Quality assessment and implications for source of fluoride. Environmental Engineering Science, v.33(7), pp.1–7, DOI: 10.1089/ees.2015.0511

    Article  Google Scholar 

  • Napacho, Z.A. and Manyele, S.V. (2010) Quality assessment of drinking water in Temeke District (part II), Characterization of chemical parameters, African Jour. Environ. Sci. Tech., v.4(11), pp.775–789.

    Google Scholar 

  • Nwankwoala, H.O. and Udom, G.J. (2011) Hydrochemical facies and ionic ratios of groundwater in Port Harcourt, Southern Nigeria. Res. Jour. Chem. Sci., v.1(3), pp.87–101.

    Google Scholar 

  • Parkhurst, D.L., Thorstenson, D.C. and Plummer, L.N. (1980) PHREEQC–A computer program for geochemical calculations. U.S. Geol. Survey, Water-Resources. Investigations, Report 80-96

    Google Scholar 

  • Ramesam, V. and Barua, S.K. (1973) Preliminary studies on the mechanisms of controlling salinity in the North Western arid regions of India. Indian Geohydrol., v.9, pp.10–18.

    Google Scholar 

  • Reimann, R.C., Filzmoser, P., Garrett, R.G. and Dutter, R. (2008) Statistical data analysis explained: Applied environmental statistics, John Wiley and Sons, Inc. New York.

    Book  Google Scholar 

  • Rodvang, S. J., Mikalson, D.M. and Ryan, M. C. (2004) Changes in groundwater quality in an irrigated area of southern Alberta. Jour. Environ. Qual., v.33, pp.476–487.

    Article  Google Scholar 

  • Schoeller, H. (1977) Geochemistry of groundwater. In: Groundwater Studies–An International Guide for Research and Practice. UNESCO, Paris, v.15, pp.1–18.

    Google Scholar 

  • Serkiz, S.M., Allison, J.D., Perdue, E.M., Allen, H.E. and Brown, D.S. (1996) Correcting errors in the thermodynamic database for the equilibrium speciation model MINTEQA2. Wat. Res., v.30(8), pp.1930–1933.

    Article  Google Scholar 

  • Sharifi, Z. and Safari Sinegani, A.A. (2012) Arsenic and other irrigation water quality indicators of groundwater in an agricultural area of Qorveh Plain, Kurdistan, Iran. American-Eurasian Jour. Agri. Environ. Sci., v.12(4), pp.548–555.

    Google Scholar 

  • Shirodkar, P. V., Mesquita, A., Pradhan, U. K., Verlekar, X.N., Babu, M.T. and Vethamony, P. (2009) Factors controlling physico-chemical characteristics in the coastal waters off Mangalore—a multivariate approach. Environ. Res., v.109(3), pp.245–257.

    Article  Google Scholar 

  • Simon, T.P. and Morris, C.C. (2009) Biological response signature of oil brine threats, sediment contaminants, and crayfish assemblages in an Indiana watershed, USA. Archives of Environmental Contamination and Toxicology, v.56(1), pp.96–110.

    Article  Google Scholar 

  • Simon, T.P. and Morris, C.C. (2014) Associated Use Attainment Response between Multiple Aquatic Assemblage Indicators for Evaluating Catchment, Habitat, Water Quality, and Contaminants. Jour. Ecosystems, v.2014, pp.1–15.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D. and Sinha, S. (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti river (India), A case study. Water Research, v.38(18), pp.3980–3992.

    Article  Google Scholar 

  • Subba Rao, N., Surya Rao, P. and Deva Varma, D. (2013). Spatial variations of groundwater vulnerability using cluster analysis. Jour. Geol. Soc. India, v.81(5), pp.685–697.

    Article  Google Scholar 

  • Suryanarayan, K.V. and Anjanappa, K. (1975) Joint pattern and dyke trends in the Tirupati area, Andhra Pradesh, India. Proc. Indian Nation. Sci. Acad., v.41A(4), pp.386–402.

    Google Scholar 

  • Swarna Latha, P. and Nageswara Rao, K. (2012). An integrated approaches to assess the quality of groundwater in a coastal aquifer of Andhra Pradesh, India. Environ. Earth Sci., v.66(8), pp.2143–2169.

    Article  Google Scholar 

  • Tabachnick, B.G. and Fidell, L.S. (2013) Using multivariate statistics, 6th edition, Boston: Pearson.

    Google Scholar 

  • Tamma Rao, G., Gurunadha Rao, V.V.S., Srinivasa Rao, Y. and Ramesh, G. (2013) Study of hydrogeochemical processes of the groundwater in Ghatprabha river sub-basin, Bagalkot District, Karnataka, India. Arabian Jour. Geosci., DOI: 10.1007/s12517-012-0535-4.

    Google Scholar 

  • Tripathi, A.K., Mishra, U.K., Mishra, A. and Dubey, P. (2012) Assessment of groundwater quality Gurh Tehseel, Rewa District Madhya Pradesh, India. Internat. Jour. Sci. and Engg. Res., v.3(9), pp.1–12.

    Google Scholar 

  • Venkateswaran, S., Vijay Prabhu, M., Mohammed Rafi, M. and Vallel, L.K. (2011) Assessment of groundwater quality for irrigational use in Cumbum Valley, Madurai District, Tamil Nadu, India. Nat. Environ. Poll Tech., v.10, pp.207–212.

    Google Scholar 

  • WHO (2011) Guidelines for drinking water quality, 2nd ed, World Health Organization Geneva.

    Google Scholar 

  • WHO (1996), Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information, World Health Organization, Geneva.

    Google Scholar 

  • Wilcox, L.V. (1955) Classification and use of Irrigation water. US Department of Agriculture, Circ. 696, Washington DC, pp.16.

    Google Scholar 

  • Yidana, S.M., Ophori, D. and Banoeng-Yakubo, B. (2008) Groundwater availability in the shallow aquifers of the southern voltaian system: A simulation and chemical analysis. Environ. Geol., v.55(8), pp.1647–1657.

    Article  Google Scholar 

  • Yidana, S.M., Banoeng-Yakubo, B. and Akabzaa, T. (2010) Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Jour. African Earth Sci., v.58(2), pp.220–234.

    Article  Google Scholar 

  • Yidana, S.M., Banoeng-Yakubo, B. and Sakyi, P.A. (2012) Identifying key processes in the hydrochemistry of a basin through the combined use of factor and regression models. Jour. Earth System Sci., v.121(2), pp.491–507.

    Article  Google Scholar 

  • Zamani, A.A., Yaftian, M.R. and Parizanganeh, A. (2012) Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant. Iranian Jour. Environ. Health Sci. and Engg., v.9(29), pp.1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nagaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, A., Sharifi, Z. & Balaji, E. Statistical and analytical evaluation of groundwater quality of Tirupati area, Chittoor district, Andhra Pradesh, South India. J Geol Soc India 88, 222–234 (2016). https://doi.org/10.1007/s12594-016-0481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-016-0481-y

Keywords

Navigation