Skip to main content
Log in

A case of normal regression with sea level transgression: Example from the Ganurgarh shale, Vindhyan basin, Maihar area, M.P., India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The Ganurgarh shale, a formation belonging to the Bhander Group of Vindhyan basin is investigated using field based detailed lithofacies and petrofacies analyses in order to interpret the depositional environment in a sequence stratigraphic context. Five major lithofacies have been recognized consisting of calcareous sandstones, laminated mudstones, rippled siltstones, red-grey shales and sandy limestones characterized by small to large-scale cross-bedding, ripple cross-lamination of wave and current origin, parallel lamination, low-angle horizontal bedding, flaser and lenticular bedding, mud-cracks, salt pseudomorphs, convolute bedding and load structures. The constituent lithofacies are recurring and grouped into three lithofacies associations where, the association A is composed of fining upwards and B with coarsening upwards cycles at the lower and middle levels of the succession respectively, are dominantly arenaceous whereas, the association C occurring at upper levels is fining upwards (FU) and becomes calcareous with meager representation of clastics. Petrographically, the section offers three main petrofacies viz., (a) sandstone- (b) siltstone- (c) sandy limestone-petrofacies. Lithofacies characters complimented with petrography show that deposition occurred within the shoreface (subtidal) to foreshore intertidal domain involving tidal flats with sub-environments ranging from intertidal to supratidal. However, lithofacies associations within the Ganurgarh shale of Maihar area represent a case of normal regression during sea level transgression. In the beginning, probably because of excessive sediment supply the sea level had a falling trend during an overall transgressive phase ultimately culminating into limestone sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar, K. and Srivastava, V. K. (1976) Ganurgarh Shale of southeastern Rajasthan, India: A precambrian regressive sequence of lagoon-tidal flat origin. Jour. Sed. Petrol., v.46(1), pp.14–21.

    Google Scholar 

  • Alexander, C.R., Nittrour, C.A., Demaster, D.J., Park, Y.A. and Park, S.C. (1991) Macrotidal mudflats of the southwestern Korean coast: a model for the interpretation of intertidal deposits. Jour. Sedim. Res., v.61, pp.805–824.

    Google Scholar 

  • Anderson, F.E. (1973) Observation of some sedimentary processes acting on a tidal flat. Mar. Geol., v.14, pp.101–116.

    Article  Google Scholar 

  • Auden, J.B. (1933) Vindhyan sedimentation in the Son Valley, Mirzapur district. Mem. Geol. Surv. India, v.62(2), pp.141–250.

    Google Scholar 

  • Banerjee, I. (1964) On some broader aspects of Vindhyan sedimentation; Prod. 22nd International Geol. Cong. New Delhi, Part XV, pp.189–204.

    Google Scholar 

  • Banerjee, S., Dutta, S., Paikaray, S. and Mann, U. (2006) Stratigraphy, Sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (Central India). Jour. Earth System Sci., v.115(1), pp.37–47.

    Article  Google Scholar 

  • Basu, A., Young, S.W., Suttner, L. J., James, W.C. and Mack, G.H. (1975) Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Jour. Sediment. Petrol., v.45(4), pp.873–882.

    Google Scholar 

  • Bhattacharyya, A., Chanda, S.K. and Bose, P.K. (1986) Upper Vindhyans of Maihar: A Field Guide; Published by Department of Geological Sciences Jadavpur Univ., Calcutta, pp.1–19.

    Google Scholar 

  • Blatt, H. and Christie, J.M. (1963) Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Jour. Sediment. Res., v.33(3), pp.559–579.

    Google Scholar 

  • Blatt, H. (1967) Original characteristics of clastic quartz grains: Jour. Sediment. Petrology, v. 37, pp.401–424.

    Google Scholar 

  • Bartholoma, A. and Flemming, B.W. (2007) Progressive grainsize sorting along an intertidal energy gradient. Sedimentary Geol., v.202, pp.464–472.

    Article  Google Scholar 

  • Bose, P. K. and Chaudhuri, A. (1990) Tide versus storm in epieric coastal deposition: two Proterozoic sequences India. Jour. Geol., v.25, pp.81–101.

    Google Scholar 

  • Bose, P. K., Sarkar, S., Chakrabarty, S. and Banerjee, S. (2001) Overview of the meso- to neoproterozoic evolution of the Vindhyan basin, Central India. Sedimentary Geol., v.141–142, pp.395–419.

    Article  Google Scholar 

  • Catuneanu, O. (2002) Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Jour. African Earth Sci., v.35, pp.1–43.

    Article  Google Scholar 

  • Chakraborti, A. (2005) Sedimentary structures of tidal flats: a journey from coast to inner estuarine region of eastern India. Jour. Earth System Sci., v.114, pp.353–368.

    Article  Google Scholar 

  • Chakraborty, P. P., Sarkar, S. and Bose, P.K. (1998) A viewpoint of Chenier Evolution: clue from a reappraisal of the Proterozoic Ganurgarh Shale, Central India. In: B.S. Paliwal (Ed.).The Indian Precambrian Scientific publishers Jodhpur, India, pp.61–72.

    Google Scholar 

  • Crawford, A. R. and Compston, W. (1970) The age of the Vindhyan System of Peninsular India Quart. Jour. Geol. Soc. London, v.125, pp.251–371.

    Google Scholar 

  • Dalrymple, R.W. (2010) Tidal Depositional Systems. In: N.P. James and R.W. Dalrymple (Eds.). Lithofacies Models, 4, GEOText6, Geol. Assoc., Canada, pp.199–208.

    Google Scholar 

  • Davis, R.A. and Dalrymple, R.W. (Eds.) (2012) Principles of Tidal Sedimentology. Springer, New York, 621p.

    Book  Google Scholar 

  • De Raaf, J.F.M. and Boersma, J.R. (1971) Tidal deposits and their sedimentary structures: Geologie en Mijnbouw, v.50, pp.479–504.

    Google Scholar 

  • Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: G.G. Zuffa, (Ed.), Provenance of arenites. Reidel Publishing Co., Dordrecht, pp. 331–361.

    Google Scholar 

  • Evans, G. (1965) Intertidal Flat sediments and their environment of deposition in the Wash. Jour. Geol. Soc. London. Quart. Jour., v.121, pp.209–245.

    Article  Google Scholar 

  • Ghazi, S. Andmountney, N. P. (2011) Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan. Sediment. Geol., v.233, pp.88–110.

    Article  Google Scholar 

  • Hird, K. and Tucker, M.E. (1988) Contrasting diagenesis of two Carboniferous oolites from South Wales: a tale of climatic influence. Sedimentology, v.35, pp.587–602.

    Article  Google Scholar 

  • Khalifa, M. and Morad, S. (2011) Impact of Structural Setting on Diagenesis of Fluvial and Tidal Sandstones: the Bahi Formation, Upper Cretaceous, NW Sirt Basin, North Central Libya. Marine and Petroleum Geology, doi: 10.1016/j.marpetgeo.2011.05.006.

    Google Scholar 

  • Klein, G. Dev. (1963) Bay of Fundy intertidal zone sediments. Jour. Sed. Petrol., v.33, pp.844–854.

    Google Scholar 

  • Kumar, S. (1976) Stromatolites from the Vindhyan rocks of Son Valley- Maihar area, districts Mirzapur (UP) and Satna (MP). Jour. Palaeont. Soc. India, v.18, pp.13–21.

    Google Scholar 

  • Longhitano, S.G. (2011) The record of tidal cycles in mixed silicabioclastic deposits: examples from small Plio-Pleistocene peripheral basins of the microtidal central Mediterranean Sea. Sedimentology, v.58(3), pp.691–719.

    Article  Google Scholar 

  • Longhitano, S.G., Mellere, D., Steel, R.J. and Ainsworth, R. B. (2012) Tidal depositional systems in the rock record: A review and new insights. Sedimentary Geol., doi: 10.1016/j.sedgeo.2012.03.024.

    Google Scholar 

  • Prasad, B. (1980) Vindhyan stromatolites stratigraphy in SE Rajasthan; Misc. Publ. Geol. Surv. India, v. 44, pp.201–206.

    Google Scholar 

  • Prasad, B. and Ramasamy (1980) Stromatolites in Upper Vindhyans from Bundi, Kota, and Sawaimadhopur districts; Misc. Publ. Geol. Surv. India, v.44, pp.275–277.

    Google Scholar 

  • Pettijohn, F. J., Potter P.E. and Siever, R. (1972) Sands and Sandstones. Springer-Verlag, New York, 618p.

    Google Scholar 

  • Plint, A.G. Eyles, N. Eyles, C.H. and Walker, R.G. (1992) Control of sea level change. In: R.G. Walker and N.P. James (Eds.), Lithofacies Models-Response to Sea Level Change, Geol. Soc. Can., St. John’s, NF, pp.15–26.

    Google Scholar 

  • Posamentier, H.G., Allen, G.P. and James, D.P. (1992) High resolution sequence stratigraphy- the East Coulee delta. Jour. Sed. Pet., v.62, pp.310–317.

    Google Scholar 

  • Posamentier, H.G. and Allen, G.P. (1999) Siliciclastic sequence stratigraphy; concepts and applications. CONC. Sed. Paleo., v. 7, pp. 204.

    Google Scholar 

  • Pratt, B.R., James, N.P. and Cowan, C.A. (1992) Peritidal carbonates. In: R.G. Walker, and N.P. James, (Eds.), Lithofacies Models: Response to Sea Level Change. Geological Association Canada, pp.303–322.

    Google Scholar 

  • Ray, J. S., Veizer, J. and Davis, W. J. (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of Vindhyan Supergroup India: age, diagenesis, correlations and implications for global events. Precambrian Res., v.121, pp.103–140.

    Article  Google Scholar 

  • Ray, J.S. (2006) Age of the Vindhyan Supergroup: a review of recent findings; Jour. Earth System Sci., v.115–1, pp.149–160.

    Article  Google Scholar 

  • Rao, K.S., Lal, C. and Ghosh, D.B. (1977) Algal stromatolites in Bhander Group Vindhyan Supergroup Satna district Madhya Pradesh. Rec. Geol. Surv. India, v.109(2), pp.38–47.

    Google Scholar 

  • Reineck, H.E. (1967) Layered sediments of tidal flats, beaches, and shelf bottoms of the North Sea. In: G.H. Lauff, (Ed.), Estuaries: Washington, D.C., Am. Assoc. Adv. Sci. Pub. No. 83, pp. 191–206.

    Google Scholar 

  • Reineck, H.E. (1972) Tidal Flats. In: J.K. Rigby and W.K. Hamblin (Eds.), Recognition of Ancient Sedimentary environments: SEPM Spec. Publ. No.16, pp.146–159.

    Chapter  Google Scholar 

  • Reineck, H.E. and Singh, I.B. (1967) Primary sedimentary structures in the recent sediments of the Jade, North Sea; Marine Geol., v.5, pp.227–235.

    Article  Google Scholar 

  • Renyaud, J.Y. and Dalrymple, R.W. (2012) Shallow-marine tidal deposits. In: S. Davis and R.W. Dalrymple (Eds.) Principles of Tidal Sedimentology, Springer, New York, pp.335–370.

    Chapter  Google Scholar 

  • Sarkar, B. (1974) Biogenic sedimentary structures and microfossils of the Bhander Limestone (Proterozoic) India; In: A. De (Ed.), Contributions to the earth and planetary sciences. Geol. Min. Met. Soc. India, Golden Jubilee Volume, pp.143–156.

    Google Scholar 

  • Shukla, U.K. and Bachman, G.H. (2007) Estuarine sedimentation in the Stuttgart Formation (Carnian, Late Triassic), South Germany. N.Jb. Geol. Paläont. Abh., v.243(3), pp.305–323, Stuttgart.

    Article  Google Scholar 

  • Shukla, U.K. and Srivastava, R. (2008) Lizard eggs from Upper Cretaceous Lameta Formation of Jabalpur, central India, with interpretation of depositional environments of the nest-bearing horizon. Cretaceous Res., v.29, pp.674–686.

    Article  Google Scholar 

  • Singh, I.B. (1985) Palaeogeography of Vindhyan Basin and its relationship with other Late Proterozoic Basins of India. Jour. Palaeont. Soc. India, v.30, pp.35–41.

    Google Scholar 

  • Tucker, M.E. and Bathurst, R.G.C. (1990) Meteoric Diagenesis. In: M.E. Tucker and R.G.C. Bathurst (Eds.), Carbonate Diagenesis. Spec. Publ. Internat. Assoc. Sedimentol., v 1, pp.181–183.

    Google Scholar 

  • Valdiya, K.S. (1969) Stromatolites of Lesser Himalayan carbonate formation and the Vindhyan. Jour. Geol. Soc. India, v.10, pp.1–25.

    Google Scholar 

  • Visher, M.J. (1980) Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: A preliminary note. Geology, v.8, pp.543–546.

    Article  Google Scholar 

  • Walkden, G.M. and Berry, J.R. (1984) Syntaxial overgrowths in muddy crinoidal limestones: cathodoluminiscence sheds new light on an old problem. Sedimentology, v. 31, pp.251–267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. K. Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adnan, A., Shukla, U.K. A case of normal regression with sea level transgression: Example from the Ganurgarh shale, Vindhyan basin, Maihar area, M.P., India. J Geol Soc India 84, 406–416 (2014). https://doi.org/10.1007/s12594-014-0146-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0146-7

Keywords

Navigation