Skip to main content
Log in

Mineral magnetic characterization of the Godavari river sediments: Implications to Deccan basalt weathering

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Mineral magnetic analysis including thermo-magnetic studies and clay mineralogy on bed load and floodplain sediments from the Godavari river indicate distinct mineral assemblages. The floodplain sediments up to the delta region are characterised by unimodal ferrimagnetic mineralogy marked by the presence of maghemite and single domain magnetites derived from Deccan basalts. On the other hand the bed loads show varied magnetic mineral assemblages depicting greater local mixing from the non-basaltic bedrock province. The temperature dependent magnetic susceptibility and clay mineralogy of the floodplain samples show titanomagnetites (Fe3O4-Fe2TiO4), maghemite (χ LF-Fe2O3) and smectite that are characteristic of the Deccan Volcanic Province (DVP). Presence of this ferrimagnetically dominant unimodal assemblage up to the delta region and probably into the Bay of Bengal off the Godavari river is attributed to extensive chemical weathering of the basalt. The quantitative approach of mineral magnetism, therefore, can be used to study the paleomonsoon variability and its relation to Deccan basalt weathering from the Godavari-Bengal fan system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bikshamaiah, G. and Subramanian, V. (1980) Chemical and sediment mass transfer in the Godavari River basin in India. Jour. Hydrol., v.46, pp.331–342.

    Article  Google Scholar 

  • Bradshaw, R. and Thompson, R. (1985) The use of magnetic measurements to investigate the mineralogy of Icelandic lake sediments and to study catchment processes. Boreas, v.14, pp.203–215.

    Article  Google Scholar 

  • Brown, G. and Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. In: G.W. Brindley and G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification. Mineralogical Soc. London, pp.305–360.

    Google Scholar 

  • Caitcheon, G.G. (1998) The application of environmental magnetism to sediment source tracing: A new approach; CSIRO Land and Water technical report, 21/98.

    Google Scholar 

  • Central Water Commission (2006) Integrated hydrological data book (non-classified river basins). Hydrological Data Directorate, Information Systems OrganizationWater Planning and Projects Wing, Central Water Commission, New Delhi, India, 383p.

    Google Scholar 

  • Chauhan, O.S. and Vogelsang, E. (2006) Climate induced changes in the circulation and dispersal patterns of the fluvial sources during late Quaternary in the middle Bengal Fan. Jour. Earth System Sci., v.115/3, pp.379–386.

    Article  Google Scholar 

  • Chakrapani, G.J. (2005) Factors controlling variations in river sediment loads. Curr. Sci., v.88/4, pp.569–575.

    Google Scholar 

  • Dekkers, M.J. (1997) Environmental magnetism: an introduction. Geologie en Mijnbouw, v.76/1 pp. 163–182.

    Article  Google Scholar 

  • Deng, C.L., Zhu, R.X., Verosub, K.L., Singer, M.J. and Vidic, N.J. (2004) Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Jour. Geophys. Res., 109:B01103. doi:10.1029/2003JB002532.

    Google Scholar 

  • Dessert, C., Dupre, B., Francois, L. M., Schott, J., Gaillardet, J., Chakrapani, G. and Bajpai, S. (2000) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet. Sci. Lett., v.188, pp.459–474.

    Article  Google Scholar 

  • Dunlop, D.J. and Ozdemir, O. (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge, v.573, pp.266–268.

    Google Scholar 

  • Evans, M.E. and Heller, F. (1994) Magnetic enhancement and palaeoclimate: Study of a loess/palaeosol couplet across the Loess Plateau of China. Geophys. Jour. Internat., v.117, pp.257–264.

    Article  Google Scholar 

  • Evans, M.E. and Heeler, F. (2003) Environmental Magnetism: Principles and Applications of Enviromagnetics. Internat. Geophys. Series, v.86, pp.21–22.

    Google Scholar 

  • King, J., Bannerjee, S.K., Marvin, J. and Ozdemir, O. (1982) A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet. Sci. Lett., v.59, pp.404–419.

    Article  Google Scholar 

  • Kolla, V. and Rao, N.M. (1991) Sedimentary sources in the surface and near surface sediments of the Bay of Bengal. GeoMarine Lett., v.10, pp.125–136.

    Google Scholar 

  • Lees, J. A. (1994) Modelling the magnetic properties of natural and environmental materials. Unpubld. Ph.D. Thesis, University of Coventry, UK.

    Google Scholar 

  • Milliman, J.D. and Meade, R.H. (1983) World-wide delivery of river sediment to the oceans. Jour. Geol., v.91, pp.1–21.

    Article  Google Scholar 

  • Moore, D.M. and Reynolds, R.C. (1997) X-ray diffraction and identification and analysis of clay minerals. 2nd edition, New York: Oxford University Press.

    Google Scholar 

  • Moskowitz, B.M., Jackson, M. and Kissel, C. (1998) Low-temperature magnetic behavior of titanomagnetites. Earth Planet. Sci. Lett., v.157, pp.141–149.

    Article  Google Scholar 

  • Oches, E. A. and Banerjee, S.K. (1996) Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic. Stud. Geophys. Geod., v.40, pp.287–300.

    Article  Google Scholar 

  • Oldfield, F. and Clark, R.L. (1990) Lake sediment-based studies of soil erosion. In: J. Boardman, I.D.L. Foster & J.A. Dearing (Eds.), Soil erosion on agricultural land, pp.201–228.

    Google Scholar 

  • Ozdermir, O., Dunlop D.J. and Moskowitz, B.M. (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys. Res. Lett., v.20/16, pp.1671–1674.

    Article  Google Scholar 

  • Peters, C. and Dekkers, M.J. (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of Earth, v.28, pp.659–667.

    Article  Google Scholar 

  • Poppe, L.J., Paskevich, v.f., Hathaway, J.C. and Blackwood, D.S. (2001) A laboratory manual for X-Ray powder diffraction. USGS Open-File Report 01-041

    Google Scholar 

  • Reddy, N.P.C. and Mohana Rao, K. (2001) Heavy sediments influx during early Holocene: Inference from clay mineral studies in a core from the Western Bay of Bengal. Curr. Sci., v.81/10, pp.1361–1364.

    Google Scholar 

  • Sagar, W.W. and Hall, S.A. (1990) Magnetic properties of black mud turbidites form ODP leg 116, distal Bengal fan, Indian Ocean. In: J.R. Cochran and D.A.V.O. Stow, et al. (Eds.), Proc. ODP-Scientific Results, v.116, pp.317–336.

    Google Scholar 

  • Sangode, S.J., Suresh, N. and Bagati, T.N. (2001) Godavari source in the Bengal fan sediments: results from magnetic susceptibility dispersal pattern. Curr. Sci., v.85(5), pp.660–664.

    Google Scholar 

  • Sangode, S. J., Sinha, R., Phartiyal, B., Chauhan, O. S., Mazari, R. K., Bagati, T. N., Suresh, N., Mishra, S., Kumar, R. and Bhattacharjee, P. (2007) Environmental magnetic studies on some Quaternary sediments of varied depositional settings in the Indian sub-continent. Quaternary Internat., v.159, pp.102–118.

    Article  Google Scholar 

  • Sangode, S.J., Meshram, D.C., Kulkarni, Y.R., Gudadhe, S.S., Malpe, D.B. and Herlekar, M.A. (2013) Neotectonic Response of the Godavari and Kaddam Rivers in Andhra Pradesh, India: Implications to Quaternary Reactivation of old fracture system. Jour. Geol. Soc. India, v.81, pp.459–471.

    Article  Google Scholar 

  • Subramanian, V. (1987) Environmental geochemistry of Indian river basins — a review. Jour. Geol. Soc. India, v.29, pp.205–220.

    Google Scholar 

  • Sun, W.W., Banerjee, S.K. and Hunt, C.P. (1995) The role of maghemite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence: An extensive rock magnetic study combined with citrate-bicarbonatedithionite treatment. Earth Planet. Sci. Lett., v.133, pp.493–505.

    Article  Google Scholar 

  • Thompson, R. and Oldfield, F. (1986) Environmental Magnetism. Allen & Unwin, London, pp.20–22.

    Book  Google Scholar 

  • Vlag, P., Alva-Valdivia, L., De Boer, C. B., Gonzalez, S. and Urrutia-fucugauchi, J. (2000) A rock- and paleomagnetic study of a Holocene lava flow in central Mexico. Physics of Earth Planet. Inter., v.118 (3–4), pp.259–272.

    Article  Google Scholar 

  • Walden, J. and Smith, J.P. (1995) Factor analysis: a practical application. In: D. Maddy and J.S. Brew (Eds.), Statistical modelling of Quaternary Science Data, Technical Guide 5, Quaternary Research Association, Cambridge, pp.39–63.

    Google Scholar 

  • Walden, J., Smith, J.P. and Dackombe, R.V. (1992) Mineral magnetic analysis as a means of lithostratigraphic correlation and provenance indication of glacial diamicts: Intra- and interunit variation. Jour. Quaternary Sci., v.7, pp.257–270.

    Article  Google Scholar 

  • Walden, J., Slattery, M.C. and Burt, T.P. (1997) Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis. Jour. Hydrol., v.202(1–4), pp.353–372.

    Article  Google Scholar 

  • Walden, J., Oldfield, F. and Smith, J. (Eds) (1999) Environmental magnetism: a practical guide. Technical guide, Issue 6, Quaternary Research Association, London.

    Google Scholar 

  • Walling, D.E., Woodward, C. and Nicholas, A.P. (1993) A multiparameter approach to fingerprinting suspended sediment sources. Tracers in Hydrology. Proc. Yokohama Symposium, v.215, pp.329–338.

    Google Scholar 

  • Wasson, R.J. (2003) A sediment budget for the Ganga-Brahmaputra catchment. Curr. Sci., v.84(8), pp.1041–1047.

    Google Scholar 

  • Yu, L. and Oldfield, F. (1989) A multivariate mixing model for identifying sediment source from magnetic measurements. Quaternary Res., v.32, pp.168–181.

    Article  Google Scholar 

  • Yu, L. and Oldfield, F. (1993) Quantitative sediment source ascription using magnetic measurements in a reservoircatchment system near Nijar, SE Spain. Earth Surfaces Processes and Landforms, v.18, pp.441–454.

    Article  Google Scholar 

  • Zhu, R.X., Lin, M. and Pan, Y. X. (1999) History of the temperature dependence of susceptibility and its implications: preliminary results along an E-W transect of the Chinese Loess Plateau. Chinese Science Bulletine, v.44(1), pp.81–86.

    Google Scholar 

  • Zhu, R.X., Matasova, G., Kazansky, A., Zykina, V. and Sun, J.M. (2003) Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophys. Jour. Internat., v.152, pp.335–343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Sangode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, Y.R., Sangode, S.J., Meshram, D.C. et al. Mineral magnetic characterization of the Godavari river sediments: Implications to Deccan basalt weathering. J Geol Soc India 83, 376–384 (2014). https://doi.org/10.1007/s12594-014-0054-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0054-x

Keywords

Navigation