Skip to main content
Log in

Petrological and geochemical studies of paleoproterozoic mafic dykes from the Chitrangi Region, Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone: Petrogenetic and tectonic significance

  • Published:
Journal of the Geological Society of India

Abstract

A number of Paleoproterozoic mafic dykes are reported to intrude volcano-sedimentary sequences of the Mahakoshal supracrustal belt. They are medium to coarse-grained and mostly trend in ENE-WSW to E-W. Petrographically they are metadolerite and metabasite. Geochemical compositions classify them as sub-alkaline basalts to andesites with high-iron tholeiitic nature. Both groups, i.e. metabasites and metadolerites, show distinct geochemical characteristics; high-field strength elements are relatively higher in metadolerites than metabasites. This suggests their derivation from different mantle melts. Chemistry does not support any possibility of crustal contamination. Trace element modeling advocates that metabasite dykes are derived from a melt originated through ∼20% melting of a depleted mantle source, whereas metadolerite dykes are probably derived from a tholeiitic magma generated through <10% melting of a enriched mantle source. Chemistry also reveals that the studied samples are derived from deep mantle sources. HFSE based discrimination diagrams suggest that metabasite dykes are emplaced in tectonic environment similar to the N-type mid-oceanic ridge basalts (N-MORB) and the metadolerite dykes exhibit tectonic setting observed for the within-plate basalts. These inferences show agreement with the available tectonic model presented for the Mahakoshal supracrustal belt. The Chitrangi region experienced N-MORB type mafic magmatism around 2.5 Ga (metabasite dykes) and within-plate mafic magmatism around 1.5–1.8 Ga (metadolerite dykes and probably other alkaline and carbonatite magmatic rocks).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharyya, S.K. (2001) Geodynamic setting of the Central Indian Tectonic Zone in central, eastern and northeastern India. Geol. Surv. India, Spec. Publ., v.64, pp.17–35.

    Google Scholar 

  • Acharyya, S.K. and Roy, A. (2000) Tectonothermal history of the central Indian Tectonic Zone and Reactivation of Major Faults/shear Zones. Jour. Geol. Soc. India, v.55, pp.239–246.

    Google Scholar 

  • Baer, G. and Heimann, A. (1995) Physics and Chemistry of Dykes. Balkema, Rotterdam, 339p.

    Google Scholar 

  • Baksi, A.K. (2000) Search for a deep-mantle component in mafic lavas using Nb-Y-Zr plot. Canadian Jour. Earth Sci., v.38, pp.813–824.

    Google Scholar 

  • Bleeker, W. (2004) Taking the pulse of planet Earth: a proposal for a new multi-disciplinary flagship project in Canadian solid Earth sciences. Geosci. Canada, v.31, pp.179–190.

    Google Scholar 

  • Bleeker, W. and Ernst, R.E. (2006) Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: E. Hanski, S. Mertanen, T. Rämö and J. Vuollo (Eds.), Dykee Swarms — Time Markers of Crustal Evolution. Taylor & Francis, London, pp.3–26.

    Chapter  Google Scholar 

  • Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X. and Wu, F. (2010) Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution. Gondwana Res., v.18, pp.638–652.

    Article  Google Scholar 

  • Condie, K.C. and Sinha, A.K. (1996) Rare earth and other trace element mobility during mylonitization: a comparison of the Brevard and Hope Valley shear zones in the Appalachian Mountains, USA. Jour. Met. Geol., v.14, pp.213–226.

    Article  Google Scholar 

  • Condie, K.C., Bobrow, D.J. and Card, K.D. (1987) Geochemistry of Precambrian mafic dykes from the Southern Superior Province. In: H.C. Halls and W.F. Fahrig (Eds), Mafic Dyke Swarms, Geol. Assoc. Canada Spec. Paper 34, pp.95–108.

  • Devaraju, T.C. (1995) Dyke swarms of Peninsular India. Mem. Geol. Soc. India, no.33, 451p.

  • Ernst, R.E. and Buchan, K.L. (1997) Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: J.J. Mahoney and M.F. Coffin (Eds), Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. Geophys. Monog. Series 100, pp.297–333.

  • Ernst, R.E. and Buchan, K.L. (2001) Large mafic magmatic events through time and links to mantle-plume heads. In: R.E. Ernst and K.L. Buchan (Eds), Mantle Plumes: Their identification through time. Geol. Soc. America Spec. Paper 352, pp.483–575.

  • Evensen, N.M., Hamilton, P.J. and O’NION, R.K. (1978) Rare earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta, v.42, pp.1199–1212.

    Article  Google Scholar 

  • Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S. and Taylor, R.N. (1997) Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett., v.153, pp.197–208.

    Article  Google Scholar 

  • Floyd, P.A. and Winchester, J.A. (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chem. Geol., v.21, pp.291–306.

    Article  Google Scholar 

  • French, J.E. and Heaman, L.M. (2010) Precise U-Pb dating of Palaeoproterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoachaean supercraton Sclavia. Precamb. Res., v.183, pp.416–441.

    Article  Google Scholar 

  • French, J.E., Heaman, L.M., Chacko, T. and Srivastava, R.K. (2008) 1891–1883 Ma Southern Bastar Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precamb. Res., v.160, pp.308–322.

    Article  Google Scholar 

  • Gill, R.C.O. and Bridgwater, D. (1979) Early Archaean basic magmatism in west Greenland: the geochemistry of the Ameralik dykes. Jour. Petrol., v.20, pp.695–726.

    Google Scholar 

  • Halls, H.C. and Fahrig, W.F. (1987) Mafic Dyke Swarms. Geol. Assoc. Canada Spec. Paper 34, 503p.

  • Halls, H.C., Kumar, A., Srinivasan, R. and Hamilton, M.A. (2007) Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precamb. Res., v.155, pp.47–68.

    Article  Google Scholar 

  • Hanski, E., Mertanen, S., RÄMÖ, T. and Vuollo, J. (2006) Dyke Swarms: Time Markers of Crustal Evolution. Taylor and Francis, London, 273p.

    Book  Google Scholar 

  • Humphris, S.E., Thompson, G., Schilling, J-G. and Kingsley, R.A. (1985) Petrological and geochemical variations along the Mid-Atlantic Ridge between 46°S and 32°S: influence of the Tristan da Cunha mantle plume. Geochim. Cosmochim. Acta, 49, pp.1445–1464.

    Article  Google Scholar 

  • Irvine, T.N. and Baragar, W.R.A. (1971) A guide to chemical classification of the common volcanic rocks. Canadian Jour. Earth Sci., v.8, pp.523–548.

    Article  Google Scholar 

  • Jain, S.C., Nair, K.K.K. and Yedekar, D.B. (1995a) Geology of the Son Narmada-Tapti lineament zone in Central India. Geol. Surv. India Spec. Publ., v.10, pp.1–154.

    Google Scholar 

  • Jain, S.C., Nair, K.K.K. and Yedekar, D.B. (1995b) Tectonic evolution of the Son-Narmada-Tapti lineament zone. Geol. Surv. India Spec. Publ., v.10, pp.333–371.

    Google Scholar 

  • Jensen, L.S. (1976) A new cation plot for classifying sub-alkaline volcanic rocks. Ontario Division Mines Misc Paper 66, 21p.

  • Jochum, K.P. and Verma, S.P. (1996) Extreme enrichment of Sb, Tl, and other trace elements in altered MORB. Chem. Geol., v.130, pp.289–299.

    Article  Google Scholar 

  • Kalsbeek, F. and Taylor, P.N. (1986) Age and origin of early Proterozoic dolerite dykes in south-west Greenland. Contrib. Mineral. Petrol., v.89, pp.307–316.

    Article  Google Scholar 

  • Le Maitre, R.W. (2002) Igneous Rocks: A classification and glossary of terms. Cambridge University Press, Cambridge, 236p.

    Book  Google Scholar 

  • Mcdonough, W.F. and Sun, S-S. (1995) The composition of the Earth. Chem. Geol. V.120, pp.223–253.

    Article  Google Scholar 

  • Mcdonough, W.F., Sun, S.-S., Ringwood, A.E., Jagoutz, E. and Hofmann, A.W. (1992) K, Rb and Cs in the earth and moon and the evolution of the earth’s mantle; Geochim. Cosmochim. Acta, v.56, pp.1001–1012.

    Article  Google Scholar 

  • Meschede, M. (1986) A method of discrimination between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol., v.56, pp.207–218.

    Article  Google Scholar 

  • Murthy, N.G.K. (1987) Mafic dyke swarms of the Indian shield; In: H.C. Halls and W.F. Fahrig (Eds), Mafic Dyke Swarms, Geol. Assoc. Canada Spec. Paper 34, pp.393–400.

  • Nair, K.K.K., Jain, S.C. and Yedekar, D.B. (1995) Stratigraphy, structure and geochemistry of the mahakoshal greenstone belt. Mem. Geol. Soc. India, no.31, pp.403–432.

  • Naqvi, S.M. and Rogers, J.J.W. (1987) Precambrian Geology of India. Oxford University Press, New York, 223p.

    Google Scholar 

  • Naqvi, S.M., Divakar Rao, V. and Narain, H. (1974) The protocontinental growth of the Indian Shield and the antiquity of its rift valleys. Precamb. Res., v.1, pp.345–398.

    Article  Google Scholar 

  • Parker A.J., Rickwood, P.C. and Tucker, D.H. (1990) Mafic Dykes and Emplacement Mechanisms. Balkema, Rotterdam, 541p.

    Google Scholar 

  • Pearce, J.A. (1982) Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Ed.), Andesites, Wiley, Chichester, pp.525–548.

    Google Scholar 

  • Pearce, J.A. and Cann, J.R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., v.19, pp.290–300.

    Article  Google Scholar 

  • Pearce, J.A. and Gale, G.H. (1977) Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. Geol. Soc. Spec. Publ., v.7, pp.14–24.

    Article  Google Scholar 

  • Pearce, J.A. and Norry, M.J. (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., v.69, pp.33–47.

    Article  Google Scholar 

  • Rajamani, V., Shivakumar, K., Hanson, G.N. and Shirey, S.B. (1985) Geochemistry and petrogenesis of amphibolite, Kolar Schist belt, South India; evidence for komatiitic magma derived by low percentage of melting of the mantle. Jour. Petrol., v.26, pp.92–123.

    Google Scholar 

  • Ramakrishnan, M. and Vaidyanadhan, R. (2010) Geology of India, Geol. Soc. India, Bangalore, 994p.

    Google Scholar 

  • Rollinson, H.R. (1993) Using geochemical data: Evaluation, Presentation, Interpretation. Longman, Essex, 352p.

    Google Scholar 

  • Roy, A. and Bandyopadhyay, B.K. (1990) Tectonic and structural pattern of the Mahakoshal belt of central India: a discussion. Geol. Surv. India Misc. Publ., v.28, pp.226–240.

    Google Scholar 

  • Roy, A. and Chakraborty, K. (2008) Precambrian Mafic-Ultramafic Magmatism in Central Indian Suture Zone. Jour. Geol. Soc. India, v.72, pp.123–140.

    Google Scholar 

  • Roy, A. and Devarajan, M.K. (2000) A reappraisal of the stratigraphy and tectonics of the Proterozoic Mahakoshal belt, Central India. In: Precambrian crust in eastern and central India. UNESCO-IUGS-IGCP-368, Geol. Surv. India Spec. Publ., v.17, pp.79–97.

    Google Scholar 

  • Roy, A. and Hanuma Prasad, M. (2003) Tectonothermal events in Central Indian Tectonic Zone and its implications in Rodinian crustal assembly. Jour. Asian Earth Sci., v.22, pp.115–129.

    Article  Google Scholar 

  • Roy, A., Ramchandra, H.M. and Bandyopadhyay, B.K. (2000). Supracrustal belts and their significance in the crustal evolution of central India. Geol. Surv. India Spec.Publ., v.55, pp.361–380.

    Google Scholar 

  • Rudnick, R.L. and Fountain, D.M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., v.33, pp.267–309.

    Article  Google Scholar 

  • Sarkar, A., Paul, D.K. and Potts, P.J. (1995) Geochronology and geochemistry of the Mid-Archaean trondhjemitic gneisses from the Bundelkhand craton, central India. In: A.K. Saha, (Ed.), Recent Researchers in Geology, Hindustan Publ. Co., pp.76–92.

  • Sarkar, A., Boda, M.S., Kundu, H.K., Mamgain, V.V. and Ravishankar (1998) Geochronology and geochemistry of Mesoproterozoic intrusive plutonites from the eastern segment of the Mahakoshal greenstone belt, Central India. IGCP-368 Seminar on Precambrian Crust in Eastern and Central India, Bhubaneshwar, pp.82–85 (Abs).

  • Seewald, J.S. and Seyfried, W.E. (1990) The effect of temperature on metal mobility in sub-seafloor hydrothermal systems: constraints from basalt alteration experiments. Earth Planet. Sci. Lett., v.101, pp.388–403.

    Article  Google Scholar 

  • Shervais, J.W. (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., v.59, pp.101–118.

    Article  Google Scholar 

  • Srivastava, R.K. (2006) Precambrian mafic dyke swarms from the Central Indian Bastar craton: temporal evolution of the subcontinental mantle. In: E. Hanski, S. Mertanen, T. Rämö and J. Vuollo (Eds.), Dykee Swarms — Time Markers of Crustal Evolution, Taylor & Francis, London, pp.147–159.

    Chapter  Google Scholar 

  • Srivastava, R.K. (2011) Dyke Swarms: Keys for Geodynamic Interpretation. Springer-Verlag, Heidelburg, 605p.

    Book  Google Scholar 

  • Srivastava, R.K. and Chalapathi Rao, N.V. (2007) Petrology, geochemistry and tectonic significance of Paleoproterozoic alkaline lamprophyres from the Jungel Valley, Mahakoshal supracrustal belt, Central India. Mineral. Petrol., v.89, pp.189–215.

    Article  Google Scholar 

  • Srivastava, R.K. and Gautam, G.C. (2008) Precambrian mafic dyke swarms from the southern Bastar central India craton: present and future perspectives. In: R.K. Srivastava, C. Sivaji and N.V. Chalapathi Rao (Eds.), Indian Dyke: Geochemistry, Geophysics and Geochronology, Narosa Publishing House Pvt. Ltd. New Delhi, pp.367–376.

    Google Scholar 

  • Srivastava, R.K. and Singh, R.K. (2004) Trace element geochemistry and genesis of the Precambrian sub-alkaline mafic dykes from central India craton: evidence for mantle metasomatism. Jour. Asian Earth Sci., v.23, pp.373–389.

    Article  Google Scholar 

  • Srivastava, R.K., Sivaji, C. and Chalapathi Rao, N.V. (2008) Indian Dyke: Geochemistry, Geophysics and Geochronology. Narosa Publishing House Pvt Ltd, New Delhi, 650p.

    Google Scholar 

  • Sun, S-.S. (1980) Lead isotopic study of young volcanic rocks from midocean ridges, ocean island and island arcs. Phil. Trans. Royal Soc. London, v.A297, pp.409–445.

    Google Scholar 

  • Tarney, J. and Weaver, B.L. (1987) Geochemistry and petrogenesis of early Proterozoic dyke swarms. In: H.C. Halls and W.F. Fahriig (Eds.), Mafic Dyke Swarms, Geological Association of Canada, Spec. Paper 34, pp.81–94.

  • Taylor, S.R. and Mclennan, S.M. (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Phil. Trans. Royal Soc. London, v.A300, pp.381–399.

    Google Scholar 

  • Verma, S.P. (1992) Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb, and Sr-Nd-Pb isotope systematic of midocean ridge basalts. Geochem. Jour., v.26, pp.159–177.

    Article  Google Scholar 

  • Verma, S.P., Torres-alvarado, I.S. and Sitelo-rodriguez, Z.T. (2002) SINCLAS: standard igneous norm and volcanic rock classificstion system. Computer Geosci., v.28, pp.711–715.

    Article  Google Scholar 

  • Weaver, B.L. and Tarney, J. (1984) Estimating the composition of the continental crust: an empirical approach. Nature, v.310, pp.575–577.

    Article  Google Scholar 

  • Winchester, J.A and Floyd, P.A. (1976) Geochemical magma type discrimination; application to altered and metamorphosed basic igneous rock. Earth Planet. Sci. Lett., v.28, pp.459–469.

    Article  Google Scholar 

  • Winchester, J.A and Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., v.20, pp.325–343.

    Article  Google Scholar 

  • Yedekar, D.B., Jain, S.C., Nair, K.K.K. and Dutta, K.K. (1990) The Central Indian collision suture. Precambrian of Central India. Geol. Surv. India Spec. Publ., v.28, pp.1–37.

    Google Scholar 

  • Zhao, J.H. and Zhou, M.F. (2007) Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Res., v.152, pp.27–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, R.K. Petrological and geochemical studies of paleoproterozoic mafic dykes from the Chitrangi Region, Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone: Petrogenetic and tectonic significance. J Geol Soc India 80, 369–381 (2012). https://doi.org/10.1007/s12594-012-0155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0155-3

Keywords

Navigation