Skip to main content
Log in

Most Invariant Manifolds of Conservative Systems have Transitive Closure

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The main result of this work in the following: for generic volume preserving flows on compact manifolds with the \(C^r\) topology, \(1\le r\le \infty \), the closure of every invariant manifold of periodic orbits and singularities is a chain transitive set. This was already known for generic symplectic and volume preserving diffeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.: Foundations of Mechanics. Benjamin/Cummings, Reading (1978)

    Google Scholar 

  2. Arbieto, A., Matheus, C.: A pasting lemma and some applications for conservative systems. Ergod. Theory Dyn. Syst. 27(5), 1399–1417 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bessa, M.: The Lyapunov exponents of generic zero divergence three-dimensional vector fields. Ergod. Theory Dyn. Syst. 27, 1445–1472 (2007)

    Article  MathSciNet  Google Scholar 

  4. Birkhoff, G.D.: On the periodic motions of dynamical systems. Acta Math. 50(1), 359–379 (1927)

    Article  MathSciNet  Google Scholar 

  5. Cabral, H.: On the Hamiltonian flow box theorem. Qual. Theory Dyn. Syst 12(1), 5–9 (2013)

    Article  MathSciNet  Google Scholar 

  6. Conley, C.: Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., vol. 38. AMS, Providence (1978)

  7. Herman, M.: Examples of compact hypersurfaces in \(R^{2p}, 2p\ge 6\), with no periodic orbits. In: Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, p. 126. Kluwer Acad. Publ. (1999)

  8. Mañé, R.: Ergodic Theory and Differentiable Dynamics. Springer, Berlin (1987). (Translated from Portuguese by Silvio Levy)

    Book  Google Scholar 

  9. Oliveira, F.: Density of recurrent points on invariant manifolds of sympletic and volume-preserving diffeomorphisms. Ergod. Theory Dyn. Syst. 22, 925–934 (2002)

    Article  Google Scholar 

  10. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer (1982) (Translated from Portuguese by A. K. Manning)

  11. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Tome II, Gauthier-Villars et fils (1899)

  12. Pugh, C.: The closing lemma. Am. J. Math. 89, 965–1009 (1967)

    Article  MathSciNet  Google Scholar 

  13. Robinson, C.: Generic properties of conservative systems. Am. J. Math. 102(3), 562–603 (1970)

    Article  MathSciNet  Google Scholar 

  14. Zuppa, C.: Regularisation \(C^\infty \) des champs vectoriels qui préservent l’élément de volume. Bull. Braz. Math. Soc. 10(2), 51–56 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, F., Oliveira, F. Most Invariant Manifolds of Conservative Systems have Transitive Closure. Differ Equ Dyn Syst 32, 1–13 (2024). https://doi.org/10.1007/s12591-020-00554-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-020-00554-4

Keywords

Navigation