Skip to main content

Advertisement

Log in

The Effects of Latent Infection on the Dynamics of HIV

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

One way in which the human immunodeficiency virus (HIV-1) replicates within a host is by infecting activated CD\(4+\) T-cells, which then produce additional copies of the virus. Even with the introduction of antiretroviral drug therapy, which has been very successful over the past decade, a large obstacle to the complete eradication of the virus is the presence of viral reservoirs in the form of latently infected CD\(4+\) T-cells. We consider a model of HIV infection that describes T-cell and viral interactions, as well as, the production and activation of latently infected T-cells. Upon determining equilibrium states of the latent cell model, the local and global asymptotic behavior of solutions is examined, and the basic reproduction number of the system is computed to be strictly less than that of the corresponding three-component model, which omits the effects of latent infection. In particular, this implies that a wider variety of parameter values will lead to viral eradication as \(t \rightarrow \infty \) due to the appearance of latent CD\(4+\) T-cells. With this realization we discuss possible alternative notions for eradication and persistence of infection other than traditional dynamical tools. These results are further illustrated by a number of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arlen, P.A., Brooks, D.G., Gao, L.Y., Vatakis, D., Brown, H.J., Zack, J.A.: Rapid expression of human immunodeficiency virus following activation of latently infected cells. J. Virol. 80(3), 1599–1603 (2006)

    Article  Google Scholar 

  2. Blankson, J.N., Persaud, D., Siliciano, R.F.: The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med. 53, 557–593 (2002)

    Article  Google Scholar 

  3. Bonhoeffer, N., Con, J.M., Nowak, M.A.: Human immunodefciency virus drug therapy and virus load. J. Virol. 71, 3275–3278 (1997)

    Google Scholar 

  4. Callaway, D.S., Perelson, A.S.: HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64, 29–64 (2002)

    Article  MATH  Google Scholar 

  5. Chen, H.Y., Di Mascio, M., Perelson, A., Gettie, A., Ho, D., et al: Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques, 9th conference on retroviruses and opportunistic infections (2002)

  6. Chun, T.-W., Fauci, A.S.: Latent reservoirs of HIV: obstacles to the eradication of virus. Proc. Natl. Acad. Sci. 96, 10958–10961 (1999)

    Article  Google Scholar 

  7. Chun, T.W., Finzi, D., Margolick, J., et al.: In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat. Med. 1, 1284–1290 (1995)

    Article  Google Scholar 

  8. Chun, T.-W., Justement, J.S., Lempicki, R.A., Yang, J., Dennis, G., et al.: Gene expression and viral production in latently infected, resting CD4\(+\) T-cells in viremic versus aviremic HIV-infected individuals. Proc. Natl. Acad. Sci. 100(4), 1908–1913 (2003)

  9. Chun, T.W., Carruth, L., Finzi, D., et al.: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997)

    Article  Google Scholar 

  10. Chun, T.W., Stuyver, L., Mizell, S.B., et al.: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. 94(24), 13193–13197 (1997)

    Article  Google Scholar 

  11. De Boer, R.J., Ribeiro, R.M., Perelson, A.S.: Current estimates for HIV-1 production imply rapid viral clearance in lymphoid tissues. PLoS Comput. Biol. 6(9), e1000906, 9 (2010). doi:10.1371/journal.pcbi.1000906. MR2741163 (2011j:92034)

  12. Doyle, T., Smith, C., Vitiello, P., et al.: Plasma HIV-1 RNA detection below 50 copies/mL and risk of virologic rebound in patients receiving highly active antiretroviral therapy. Clin. Infect. Dis. 54(5), 724–732 (2012). doi:10.1093/cid/cir936

    Article  Google Scholar 

  13. Elaiw, A.M.: Global properties of a class of HIV models. Nonlinear Anal. Real World Appl. 11(4), 2253–2263 (2010). doi:10.1016/j.nonrwa.2009.07.001. MR2661895 (2011m:92107)

    Article  MathSciNet  MATH  Google Scholar 

  14. Finzi, D., et al.: Latent infection of CD4\(+\) T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5, 512–517 (1999)

  15. Haase, A.T., Henry, K., Zupancic, M., Sedgewick, G., Faust, R.A., et al.: Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274, 985–989 (1996)

    Article  Google Scholar 

  16. Hockett, R.D., Kilby, J.M., Derdeyn, C.A., Saag, M.S., Sillers, M., et al.: Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J. Exp. Med. 189, 1545–1554 (1999)

    Article  Google Scholar 

  17. Janeway, C., Travers, P., Walport, M., Shlomchik, M.J.: Immunobiology 5: The Immune System in Health and Disease. Garland Publishing, New York (2001)

    Google Scholar 

  18. Kim, H., Perelson, A.S.: Viral and latent reservoir persistence in HIV-1-infect patients on therapy. PLoS Comput. Biol. 2(10), e135 (2006). doi:10.1371/journal.pcbi.0020135

    Article  Google Scholar 

  19. Kim, H., Perelson, A.S.: Dynamic characteristics of HIV-1 reservoirs. Curr. Opin. HIV AIDS 1, 152–156 (2006)

    Google Scholar 

  20. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66(4), 879–883 (2004). doi:10.1016/j.bulm.2004.02.001. MR2255781 (2007e:34096)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A., Ho, D.: Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227 (1998)

    Article  Google Scholar 

  22. Markowitz, M., Louie, M., Hurley, A., Sun, E., et al.: A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J. Virol. 777, 5037–5038 (2003)

    Article  Google Scholar 

  23. Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., et al.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997)

    Article  Google Scholar 

  24. Perelson, A.S., Kirschner, D.E., de Boer, R.: Dynamics of HIV infection of CD4\(+\) T-cells. Math. Biosci. 114, 81–125 (1993)

  25. Perko, L.: Differential Equations and Dynamical Systems, Texts in Applied Mathematics, vol. 7, 3rd edn. Springer, New York (2001). doi:10.1007/978-1-4613-0003-8. MR1801796 (2001k:34001)

    Book  MATH  Google Scholar 

  26. Pope, M., Haase, A.T.: Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat. Med. 9, 847–852 (2003)

    Article  Google Scholar 

  27. Ramratnam, B., Mittler, J.E., Zhang, L., Boden, D., Hurley, A., et al.: The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nat. Med. 6, 82–85 (2000)

    Article  Google Scholar 

  28. Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., et al.: Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354, 1782–1785 (1999)

    Article  Google Scholar 

  29. Rong, L., Perelson, A.S.: Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput. Biol. 5(10), e1000533, 18 (2009). doi:10.1371/journal.pcbi.1000533. MR2575020 (2011d:92047)

  30. Rong, L., Perelson, A.S.: Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol. 260(2), 308–331 (2009). doi:10.1016/j.jtbi.2009.06.011. MR2973086

    Article  MathSciNet  Google Scholar 

  31. Rong, L., Feng, Z., Perelson, A.S.: Mathematical modeling of HIV-1 infection and drug therapy. Mathematical Modelling of Biosystems. Applied Optimization, vol. 102. Springer, Berlin (2008). MR2405002 (2009h:92037)

    Chapter  Google Scholar 

  32. Sedaghat, A.R., Siliciano, J.D., Brennan, T.P., Wilke, C.O., Siliciano, R.F.: Limits on replenishment of the resting CD4\(+\) T cell reservoir for HIV in patients on HAART. PLoS Pathog. 3(8), e122 (2007)

  33. Smith, R.J., Aggarwala, B.D.: Can the viral reservoir of latently infected \(\text{ CD }4+\) T cells be eradicated with antiretroviral HIV drugs? J. Math. Biol. 59(5), 697–715 (2009). doi:10.1007/s00285-008-0245-4. MR2533762 (2010i:34121)

  34. Stafford, M.A., Corey, L., Cao, Y., Daare, E.S., Ho, D.D., Perelson, A.S.: Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203, 285–301 (2000)

    Article  Google Scholar 

  35. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012). MR2961944

    MATH  Google Scholar 

  36. Tuckwell, H.C., Le Corfec, E.: A stochastic model for early HIV-1 population dynamics. J. Theor. Biol. 195, 451–463 (1998)

    Article  Google Scholar 

  37. Tuckwell, H.C., Shipman, P.D.: Predicting the probability of persistence of HIV infection with the standard model. J. Biol. Syst. 19(4), 747–762 (2011). doi:10.1142/S0218339011004147. MR2870478

    Article  MathSciNet  Google Scholar 

  38. Tuckwell, H.C., Wan, F.Y.M.: Nature of equilibria and effects of drug treatments in some simple viral population dynamical models. IMA J. Math. Appl. Med. Biol. 17, 311–327 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation under awards DMS-0908413 and DMS-1211667. We also thank Prof. Mrinal Raghupathi (USNA) and ENS Peter Roemer (USN) for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Pankavich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankavich, S. The Effects of Latent Infection on the Dynamics of HIV. Differ Equ Dyn Syst 24, 281–303 (2016). https://doi.org/10.1007/s12591-014-0234-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-014-0234-6

Keywords

Navigation