Skip to main content
Log in

Solutions of Differential–Difference Equations Arising from Mathematical Models of Granulocytopoiesis

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The closed form solutions of differential–difference equations arising from mathematical models of granulocytopoiesis, both with and without maturing cells, are presented. The model with maturing cells, which we call model I, is considered first. The solution technique consists of a Laplace transform approach that converts each of the two differential–difference equations to a difference equation in the transform domain, and subsequent Laplace transform inversion of the solution to express it in the time domain. The model without maturing cells, which we call model II, is next considered and is solved by a method similar to that for model I. From these solutions, useful information and properties, like average number of active and maturing cells, and the transient growth and half-life periods of cells in each stage, can be obtained analytically. This information can play a very crucial role in the treatment of granulocytopoiesis. Further, the numerical solution of another model, which we call model III, for describing the dynamics of imatinib (drug used to treat certain types of cancer)-treated chronic myelogenous leukemia is discussed using a wavelet adaptive computational approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cronkite, E.P., Vincent, P.C.: Granulocyteopoiesis. In: Stohlman, F. (ed.) Hemopoietic Cellular Proliferation. Grune and Stratton, New York (1970)

  2. Maloney, M., Patt, H.M.: Granulocyte transit from bone marrow to blood. Blood 31, 195–201 (1968)

    Google Scholar 

  3. Ahmed, E., Hegazi, A.S., Elgazzar, A.S.: On difference equations motivated by modelling the heart. Nonlinear Dyn. 46, 49–60 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Izzo, G., Vecchio, A.: A discrete time version for models of population dynamics in the presence of an infection. J. Comput. Appl. Math. 210, 210–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fokas, A.S., Keller, J.B., Clarkson, B.D.: Mathematical model of granulocytopoiesis and chronic myelogenous leukemia. Cancer Res. 51, 2084–2091 (1991)

    Google Scholar 

  6. Cronkite, E.P., Vincent, P.C.: Granulocyteopoiesis. Ser. Haematol. 2, 3–43 (1969)

    Google Scholar 

  7. Rubinow, S.I.: A simple model of steady state differentiating cell system. J. Cell Biol. 43, 32–39 (1969)

    Article  Google Scholar 

  8. Rubinow, S.I., Lebowitz, J.L.: A mathematical model of neutrophil production and control in normal man. J. Math. Biol. I, 187–225 (1975)

    Article  Google Scholar 

  9. Whittaker, J.A.: Leukemia. Blackwell Scientific Publisher, Oxford (1968)

    Google Scholar 

  10. Druker, B.J., Lydon, N.B.: Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelegenous luekemia. J. Clin. Investig. 105, 3–7 (2000)

    Article  Google Scholar 

  11. Campbell, J.D., Cook, G., Holyoake, T.L.: Evolution of bone marrow transplantation-the original immunotherapy. Trends Immunol. 22, 88–92 (2001)

    Article  Google Scholar 

  12. Wheldon, T.E., Krik, J., Finlay, H.M.: Cyclical granulopoiesis in chronic granulocytic leukemia: a simulation study. Blood 43, 379–225 (1974)

    Google Scholar 

  13. Loeffler, M., Wichmann, H.E.: A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results. Cell Tissue Kinet. 13, 543–561 (1980)

    Google Scholar 

  14. Neiman, B.: A Mathematical Model of Chronic Myelogenous Leukemia. Oxford University, Oxford (2000)

  15. Moore, H., Li, N.K.: A mathematical model for chronic myelogeneous leukemia (CML) and T cell interaction. J. Theory. Biol. 225, 513–523 (2004)

    Article  MathSciNet  Google Scholar 

  16. Kim, P.S., Lee, P.P., Levy, D.: Modelling imatinib-treated chronic myelogeneous leukemia: reducing the complexity of agent-based models. Bull. Math. Biol. 70, 728–744 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kim, P.S., Lee, P.P., Levy, D.: A PDE model for imatinib-treated chronic myelogenous leukemia. Bull. Math. Biol. 70, 1994–2016 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liandrat, J., Tchamitchian, P.: Resolution of the 1d Regularized Burgers Equation Using a Spatial Wavelet Approximation. Technical Report , pp. 90–83, ICASE, (1990)

  19. Vasilyev, O.V., Bowman, C.: Second generation wavelet collocation method for the solution of partial differential equations. J. Comput. Phys. 165, 660–693 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mehra, M., Kevlahan, N.K.-R.: An adaptive wavelet collocation method for the solution of partial differential equations on the sphere. J. Comput. Phys. 227, 5610–5632 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Aldroubi, A., Unser, M.: Wavelets in Medicine and Biology. CRC press, Boca Raton (1996)

    MATH  Google Scholar 

  22. Mallik, R.K.: Solutions of linear difference equations with variable coefficients. J. Math. Anal. Appl. 222, 79–91 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mallik, R.K.: On the solution of a linear homogeneous difference equation with variable coefficients. Siam J. Math. Anal. 31, 375–385 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Blumenson, L.E.: A comprehensive modelling procedure for the human granulopoietic system: over-all view and summary of the data. Blood 42, 303–312 (1973)

    Google Scholar 

  25. Roeder, I., et al.: Dynamic modeling of imatinib treated cml: functional insights and clinical implications. Nat. Med. 12, 1181–1184 (2006)

    Article  Google Scholar 

  26. Jameson, L.: On the Wavelet-Optimized Finite Difference Method. ICASE CR-191601 (1994)

  27. Kumar, V., Mehra, M.: Wavelet optimized finite difference method using interpolating wavelets for self-adjoint singularly perturbed problems. J. Comput. Appl. Math. 230, 803–812 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P.: Dyanmics of chronic myeloid leukemia. Nature 435, 1267–1270 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Mehra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehra, M., Mallik, R.K. Solutions of Differential–Difference Equations Arising from Mathematical Models of Granulocytopoiesis. Differ Equ Dyn Syst 22, 33–49 (2014). https://doi.org/10.1007/s12591-013-0159-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-013-0159-5

Keywords

Navigation