Skip to main content
Log in

Study of silver nanoparticle/polyvinyl alcohol nanocomposite

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Silver nanoparticles (Ag NPs) have been synthesized by chemical reduction in silver nitrate solution in the presence of the strong reducing agent sodium borohydride, NaBH4 and polyvinyl alcohol, and PVA was added as a stabilizer for Ag NPs by two methods: in situ and ex situ. Stability of Ag NPs has been studied by using DLS method. UV–Vis spectroscopy confirms the presence of silver nanoparticles in the solution in both the methods. PVA has been proved to stabilize Ag NPs comparatively better in the solution prepared by ex situ method than in situ method. Bare PVA film and both Ag/PVA nanocomposite films prepared by solution casting method were subjected to moisture absorption test, XRD, FESEM, EDX and antibacterial activity (against Escherichia coli) study. Ag NPs prepared by in situ process show better property with respect to moisture absorption and crystallinity. Again, the lower value of MIC (minimum inhibitory concentration) of the Ag/PVA NC film prepared via ex situ mode against E. coli shows better antibacterial property than Ag/PVA NC film prepared via in situ method suggests for food packaging application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Izatt RM, Rytting JH, Christensen JJ (1971) Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem Rev 71:439–481. https://doi.org/10.1021/cr60273a002

    Article  CAS  PubMed  Google Scholar 

  2. Garrard W, Lascelles J (1968) Regulation of Staphylococcus aureus lactate dehydrogenase. J Bacteriol 95:152–156

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Guerlava P, Izac V, Tholozan JL (1998) Comparison of different methods of cell lysis and protein measurements in clostridium perfringens: application to the cell volume determination. Curr Microbiol 36:131–135. https://doi.org/10.1007/pl00006756

    Article  CAS  PubMed  Google Scholar 

  4. Fuhrmann GF, Rothstein A (1968) The mechanism of the partial inhibition of fermentation in yeast by nickel ions. Biochim Biophys Acta 163:331–338. https://doi.org/10.1128/aem.02001-07

    Article  CAS  PubMed  Google Scholar 

  5. Miller LP, McCallan SEA (1957) Toxic action of metal ions to fungus spores. J Agric Food Chem 5:116–122. https://doi.org/10.1021/jf60072a003

    Article  CAS  Google Scholar 

  6. Prucek R, Kolar M, Kilianova M, Tucek J et al (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterial 32:4704–4713. https://doi.org/10.1016/j.biomaterials.2011.03.039

    Article  CAS  Google Scholar 

  7. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471. https://doi.org/10.1021/j100123a004

    Article  CAS  Google Scholar 

  8. Huang ZY, Mills G, Hajek B (1993) Spontaneous formation of silver particles in basic 2-propanol. J Phys Chem 97:11542–11550. https://doi.org/10.1021/j100146a031

    Article  CAS  Google Scholar 

  9. Pal T, Sau TK, Jana NR (2001) Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis. J Colloid Interface Sci 140:75–80. https://doi.org/10.1016/s1010-6030(01)00389-6

    Article  Google Scholar 

  10. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873. https://doi.org/10.1021/cr00098a010

    Article  CAS  Google Scholar 

  11. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257. https://doi.org/10.1021/ar960016n

    Article  CAS  PubMed  Google Scholar 

  12. Pastoriza-Santos I, Liz-Marzan LM (2000) Binary cooperative complementary nanoscale interfacial materials. Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure Appl Chem 72:83–90. https://doi.org/10.1351/pac200072010083

    Article  CAS  Google Scholar 

  13. Lee JE, Kim JW, Jun JB et al (2004) Polymer/Ag composite microspheres produced by water-in-oil-in-water emulsion polymerization and their application for a preservative. Colloid Polym Sci 282:295–299. https://doi.org/10.1007/s00396-003-0943-9

    Article  CAS  Google Scholar 

  14. Kim M, Byun JW, Shin DS, Lee YS (2009) Spontaneous formation of silver nanoparticles on polymeric supports. Mater Res Bull 44:334–338. https://doi.org/10.1016/j.materresbull.2008.05.014

    Article  CAS  Google Scholar 

  15. Zhang S, Sun D, Fu Y, Du H (2003) Recent advances of superhard nanocomposite coatings: a review. Surf Coat Technol 167:113–119. https://doi.org/10.1016/S0257-8972(02)00903-9

    Article  CAS  Google Scholar 

  16. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Am Soc Microbiol 74:2171–2178. https://doi.org/10.1128/aem.02001-07

    Article  CAS  Google Scholar 

  17. Ramesh GV, Porel S, Radhakrishnan TP (2009) Polymer thin films embedded with in situ grown metal nanoparticles. Chem Soc Rev 38:2646–2656. https://doi.org/10.1039/b815242j

    Article  CAS  PubMed  Google Scholar 

  18. Porel S, Singh S, Harsha SS, Rao DN, Radhakrishnan TP (2005) Nanoparticle-embedded polymer: in situ synthesis, freestanding films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater 17:9–12. https://doi.org/10.1039/b815242j

    Article  CAS  Google Scholar 

  19. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 3:95–101. https://doi.org/10.1016/j.nano.2006.12.001

    Article  CAS  Google Scholar 

  20. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401. https://doi.org/10.1021/mp900056g

    Article  CAS  PubMed  Google Scholar 

  21. Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen 12:288–294. https://doi.org/10.1111/j.1067-1927.2004.012304.x

    Article  PubMed  Google Scholar 

  22. Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289. https://doi.org/10.1016/j.actbio.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  23. Berger TJ, Spadaro JA, Chapin SE, Becker RO (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 9:357–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rayman MK, Lo TC, Sanwal BD (1972) Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations. J Biol Chem 247:6332–6339

    CAS  PubMed  Google Scholar 

  25. Schreurs WJ, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Varshney R, Mishra AN, Bhadauria S, Gaur MS (2009) A novel microbial route to synthesis silver nanoparticles using fungus hormoconisresinae. Dig J Nanomater Biostruct 4:349–355

    Google Scholar 

  27. Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99. https://doi.org/10.1016/j.optmat.2006.03.014

    Article  CAS  Google Scholar 

  28. Ahmad Z, Pandey R, Sharma S, Khuller GK (2006) Alginate nanoparticles as antituberculosis drug carriers: formulation development pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176

    PubMed  Google Scholar 

  29. Won H, Nersisyan H, Won CW, Lee JM, Hwang JS (2010) Preparation of porous silver particles using ammonium formate and its formation mechanism. Chem Eng J 156:459–464. https://doi.org/10.1016/j.cej.2009.10.053

    Article  CAS  Google Scholar 

  30. Tripathi S, Mehrotra GK, Dutta PK (2011) Chitosan–silver oxide nanocomposite film: preparation and antimicrobial activity. Bull Mater Sci 34:29–35. https://doi.org/10.1007/s12034-011-0032-5

    Article  CAS  Google Scholar 

  31. Johnston JH, Borrmann T, Rankin D, Cairns M, Grindrod JE, McFarlane A (2008) Nano-structured composite calcium silicate and some novel applications. Curr Appl Phys 8:504–507. https://doi.org/10.1016/j.cap.2007.10.060

    Article  Google Scholar 

  32. Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69:164–168. https://doi.org/10.1016/j.colsurfb.2008.11.004

    Article  CAS  Google Scholar 

  33. Hong KH, Park JL, Sul IH, Youk JH, Kang TJ (2006) Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci, Part B: Polym Phys 44:2468–2474. https://doi.org/10.1002/polb.2091

    Article  CAS  Google Scholar 

  34. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107. https://doi.org/10.1016/j.lwt.2007.06.019

    Article  CAS  Google Scholar 

  35. Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, ZhengY HuQ (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114:547–552. https://doi.org/10.1016/j.foodchem.2008.09.085

    Article  CAS  Google Scholar 

  36. Kong H, Jang J (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056. https://doi.org/10.1021/la703085e

    Article  CAS  PubMed  Google Scholar 

  37. Sheikh FA, Barakat NAM, Kanjwal MA, Chaudhari AA, Jung IH, Lee JH, Kim HY (2009) Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol Res 17:688–696. https://doi.org/10.1007/bf03218929

    Article  CAS  Google Scholar 

  38. Fu J, Ji J, Fan D, Shen JJ (2006) Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J Biomed Mater Res A 79:665–674. https://doi.org/10.1002/jbm.a.30819

    Article  CAS  PubMed  Google Scholar 

  39. Jung R, Kim Y, Kim HS, Jin HJ (2009) Antimicrobial properties of hydrated cellulose membranes with silver. J Biomater Sci 20:311–324. https://doi.org/10.1163/156856209x412182

    Article  CAS  Google Scholar 

  40. Yoksan R, Chirachanchai S (2010) Silver nanoparticle-loaded chitosan–starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng, C 30:891–897. https://doi.org/10.1016/j.msec.2010.04.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Dr. P. S. Ray of Indian Institute of Science, Education and Research, West Bengal, for carrying out the evaluation of antibacterial activity in their laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R.K., Das, M. Study of silver nanoparticle/polyvinyl alcohol nanocomposite. Int J Plast Technol 23, 101–109 (2019). https://doi.org/10.1007/s12588-019-09229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-019-09229-4

Keywords

Navigation