Skip to main content
Log in

Phase morphology, mechanical, dynamic mechanical, crystallization, and thermal degradation properties of PP and PP/PS blends modified with SEBS elastomer

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Binary and ternary blends comprised of polypropylene (PP), polystyrene (PS) and polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) were prepared. The effect of phase composition of minor components on the morphology, mechanical, viscoelastic, crystallization, and thermal degradation properties was studied. Binary blends exhibited inferior properties, typical of immiscible and incompatible multi-phase systems and showed matrix-droplet phase morphologies. Ternary blends, especially those with greater concentration of SEBS minor phase, exhibited interesting properties. Scanning electron micrographs of SEBS compatibilized PP/PS blends, did not show any PS particle pulling out of the PP matrix, indicating good compatibility of SEBS with PP/PS blends. Dynamic mechanical analysis also supported the heterogeneous phase structure of the blends. Thermogravimetry and differential scanning calorimetry showed that addition of PS and SEBS decreased the thermal stability of PP marginally, but shows slight variations in melting and crystallization behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Utracki Leszek A, Mukhopadhyay P, Gupta RK (2014) Chapter 1, Polymer blends introduction. In: Utracki Leszek A, Wilkie Charles A (eds) Polymer blends handbook, 2nd edn. Springer, NY

    Google Scholar 

  2. Vuluga Z, Panaitescu DM, Radovici C, Nicolae C, Iorga MD (2012) Effect of SEBS on morphology, thermal, and mechanical properties of PP/organoclay nanocomposites. Polym Bull 69:1073–1091

    Article  CAS  Google Scholar 

  3. Azizi A, Arefazar A, Jazani OM (2013) Effects of core-shell particles on fracture micromechanisms of PP/PC/SEBS ternary blends. Polym Plast Technol Eng 52:1595–1603

    Article  CAS  Google Scholar 

  4. Drozdov AD, Sanporean CG, Christiansen JDC (2014) Enhancement of mechanical properties of polypropylene by blending with styrene- (ethylene-butylene)-styrene tri-block copolymer. J Polym Eng 34:765–774

    Article  CAS  Google Scholar 

  5. Sharma R, Maiti SN (2014) Effects of crystallinity of PP and flexibility of SEBS-g-MA copolymer on the mechanical properties of PP/SEBS-g-MA blends. Polym Plast Technol Eng 53:229–238

    Article  CAS  Google Scholar 

  6. Azizi A, Arefazar A, Jazani OM (2014) Fracture micromechanisms of polypropylene/polycarbonate/poly(styrene-b-(ethylene-co-butylene)-b-styrene) (PP/PC/SEBS) ternary blends: the effects of SEBS content. J Macromol Sci B Phys 53:1103–1115

    Article  CAS  Google Scholar 

  7. Sharma R, Maiti SN (2015) Effects of crystallinity of polypropylene (PP) on the mechanical properties of PP/styrene-ethylene-butylene-styrene-g-maleic anhydride (SEBS-g-MA)/teak wood flour (TWF) composites. Polym Bull 72:627–643

    Article  CAS  Google Scholar 

  8. Lyu S (2003) Block copolymers suppressing droplet coalescence through stopping film rupture. Macromolecules 36:10052–10055

    Article  CAS  Google Scholar 

  9. Sundararaj U (2006) Phase morphology development in polymer blends: processing and experimental aspects. In: Harrats C, Thomas S, Groeninckx G (eds) Micro- and nanostructured multiphase polymer blend systems: phase morphology and interfaces. Taylor & Francis Group, Boca Raton, pp 133–164

    Google Scholar 

  10. Huang H (2011) Macro-micro and nanostructured morphologies of multiphase polymer systems, Chapter 6. In: Boudenne A, Ibos L, Candau Y, Thomas S (eds) Handbook of multiphase polymer systems, vol 1. Wiley, New York, pp 151–249

    Google Scholar 

  11. Jose S, Thomas S, Biju PK, Kargr-Kocsis J (2013) Mechanical and dynamic mechanical properties of polyolefin blends: effect of blend ratio and copolymer monomer fraction on the compatibilisation efficiency of random copolymers. J Polym Res 20:303–316

    Article  Google Scholar 

  12. Parameswarnpillai J, Joseph G, Chellappan RV, Zachakariah AK, Hameed N (2015) The effect of polypropylene-graft-maleic anhydride on the morphology and dynamic mechanical properties of polypropylene/polystyrene blends. J Polym Res 22:1–11

    Article  Google Scholar 

  13. Parameswaranpillai J, Joseph G, Jose S, Hameed N (2015) Phase morphology, thermomechanical, and crystallization behavior of uncompatibilized and PP-g-MAH compatibilized polypropylene/polystyrene blends. J Appl Polym Sci 132:42100

    Article  Google Scholar 

  14. Dı´az MF, Barbosa SE, Capiati NJ (2005) Improvement of mechanical properties for PP/PS blends by in situ compatibilization. Polymer 46:6096–6101

    Article  Google Scholar 

  15. Waldman WR, De Paoli MA (2008) Photodegradation of polypropylene/polystyrene blends: styrene–butadiene–styrene compatibilisation effect. Polym Degrad Stabil 93:273–280

    Article  CAS  Google Scholar 

  16. Al-Saleh MH, Sundararaj U (2008) Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene–butadiene–styrene copolymer: influence of morphology on electrical resistivity. Eur Polym J 44:1931–1939

    Article  CAS  Google Scholar 

  17. Li Y, Hu S, Sheng J (2007) Evolution of phase dimensions and interfacial morphology of polypropylene/polystyrene compatibilized blends during mixing. Eur Polym J 43:561–572

    Article  Google Scholar 

  18. Lin BH, Du MC, Zhu YJ, Liang YW (2014) Non-isothermal crystallization behavior and kinetics of compatibilized β nucleated polypropylene/polystyrene blends. Adv Mater Res 893:291–294

    Article  Google Scholar 

  19. de Freitas CA, Valera TS, de Souza AMC, Demarquette NR (2007) Morphology of compatibilized ternary blends. Macromol Symp 247:260–270

    Article  Google Scholar 

  20. Wang D, Li Y, Xie XM, Guo BH (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52:191–200

    Article  CAS  Google Scholar 

  21. Le Corroller P, Favis BD (2011) Effect of viscosity in ternary polymer blends displaying partial wetting phenomena. Polymer 52:3827–3834

    Article  Google Scholar 

  22. Ravati S, Favis BD (2013) Tunable morphologies for ternary blends with poly(butylene succinate): partial and complete wetting phenomena. Polymer 54:3271–3281

    Article  CAS  Google Scholar 

  23. Rastin H, Jafari SH, Saeb MR, Khonakdar HA, Wagenknecht U, Heinrich G (2014) On the reliability of existing theoretical models in anticipating type of morphology and domain size in HDPE/PA-6/EVOH ternary blends. Eur Polym J 53:1–12

    Article  CAS  Google Scholar 

  24. Kolahchi AR, Ajji A, Carreau PJ (2014) Surface morphology and properties of ternary polymer blends: effect of the migration of minor components. J Phys Chem B 118:6316–6323

    Article  Google Scholar 

  25. Dou R, Wang W, Zhou Y, Li L, Gong L, Yin B, Yang M (2013) Effect of core-shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDM-g-MA/HDPE ternary blend. J Appl Polym Sci 129:253–262

    Article  CAS  Google Scholar 

  26. Abreu FOMS, Forte MMC, Liberman SA (2005) SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J Appl Polym Sci 95:254–263

    Article  CAS  Google Scholar 

  27. Parameswaranpillai J, Joseph G, Shinu KP, Sreejesh PR, Jose S, Salim NV, Hameed N (2015) The role of SEBS in tailoring the interface between the polymer matrix and exfoliated graphene nanoplatelets in hybrid composites. Mater Chem Phys 163:182–189

    Article  CAS  Google Scholar 

  28. Parameswaranpillai J, Joseph G, Shinu KP, Jose S, Salim NV, Hameed N (2015) Development of hybrid composites for automotive applications: effect of addition of SEBS on the morphology, mechanical, viscoelastic, crystallization and thermal degradation properties of PP/PS–xGnP composites. RSC Adv 33:25634–25641

    Article  Google Scholar 

  29. Van der Wal A, Mulder JJ, Gaymans RJ (1998) Fracture of polypropylene: the effect of crystallinity. Polymer 39:5477–5481

    Article  Google Scholar 

  30. Karger-Kocsis J, Kalló A, Szafner A, Bodor G, Zs Sényei (1979) Morphological study on the effect of elastomeric impact modifiers in polypropylene systems. Polymer 20:37–43

    Article  CAS  Google Scholar 

  31. Tortorella N, Beatty CL (2008) Morphology and mechanical properties of impact modified polypropylene blends. Polym Eng Sci 48:2098–2110

    Article  Google Scholar 

  32. Macau´bas PHP, Demarquette NR (2001) Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer 42:2543–2554

    Article  Google Scholar 

  33. Ismail HH, Nasir M (2002) Morphological studies of uncompatibilized and compatibilized polystyrene/polypropylene blend. Polym Test 21:263–267

    Article  Google Scholar 

  34. Wildes G, Keskkula H, Paul DR (1999) Coalescence in PC/SAN blends: effect of reactive compatibilization and matrix phase viscosity. Polymer 40:5609–5621

    Article  CAS  Google Scholar 

  35. Welander M, Rigdahl M (1989) Use of an emulsifying block copolymer to improve time-dependent mechanical properties of polyethylene-polystyrene blends. Polymer 30:207–212

    Article  CAS  Google Scholar 

  36. Manglio G, Palumbo R (1984) Polymer blends, processing, morphology and properties. Plenum press, New York, p 41

    Google Scholar 

  37. Bassani A, Pessan LA, Hage E (2001) Toughening of polypropylene with styrene/ethylene-butylene/styrene tri-block copolymer: effects of mixing condition and elastomer content. J Appl Polym Sci 82:2185–2193

    Article  CAS  Google Scholar 

  38. Mcgrath GC, Fracture and toughening in fiber reinforced polymer composites, in rubber toughened engineering plastics, Chapman & hall, 1994, 61

  39. Balkan O, Demirer H, Kayali ES (2011) Effects of deformation rates on mechanical properties of PP/SEBS blends. J Achiev Mater Manuf Eng 47:26–33

    Google Scholar 

  40. Brostow W, Grguric TH, Olea-Mejia O, Pietkiewicz D, Rek V (2008) Polypropylene + polystyrene blends with a compatibilizer. Part 2. Tribological and mechanical properties. e-Polymers, no. 034

  41. Samsudin SA, Hassan A, Mokhtar M, Jamaluddin SMS (2005) Effect of SEBS on the mechanical properties and miscibility of polystyrene rich polystyrene/polypropylene blends. Prog Rubber Plast Recycl Technol 21:261–276

    CAS  Google Scholar 

  42. Ahmad Z, Kumar KD, Saroop M, Preschilla N, Biswas A, Bellare JB, Bhowmick AK (2010) Highly transparent thermoplastic elastomer from isotactic polypropylene and styrene/ethylene-butylene/styrene triblock copolymer: structure-property correlations. Polym Eng Sci 50:331–341

    Article  CAS  Google Scholar 

  43. Zhao X, Huang Y, Kong M, Yang Q, Li G (2014) Retarded stress and morphology relaxation of deformed polymer blends in the presence of a triblock copolymer. RSC Adv 4:59302–59309

    Article  CAS  Google Scholar 

  44. Liao CZ, Tjong SC (2011) Effects of carbon nanofibers on the fracture, mechanical, and thermal properties of PP/SEBS-g-MA blends. Polym Eng Sci 51:948–958

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J P acknowledges the Department of Science and Technology, Government of India, for financial support under an Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (contract Grant Number IFA-CH-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotishkumar Parameswaranpillai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parameswaranpillai, J., Jose, S., Siengchin, S. et al. Phase morphology, mechanical, dynamic mechanical, crystallization, and thermal degradation properties of PP and PP/PS blends modified with SEBS elastomer. Int J Plast Technol 21, 79–95 (2017). https://doi.org/10.1007/s12588-017-9172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-017-9172-9

Keywords

Navigation