Skip to main content
Log in

Synthesis and characterization of organic-inorganic hybrid clay filled and bismaleimide—siloxane modified epoxy nanocomposites

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Organic-inorganic hybrids involving organo-modified montmorillonite (OMMT) clay and tetraglycidyl diamino diphenyl methane epoxy (TGDDM) were prepared via in situ polymerization by the homogeneous dispersion of various percentages (1–5% w/w) of clay in epoxy matrix resin. The resulting homogeneous epoxy—clay hybrids were modified with 10 wt% of hydroxyl terminated polydiemthyl siloxane (HTPDMS) using γ—aminopropyltriethoxysilane (γ-APS) as coupling agent in the presence of tin catalyst. The siliconized epoxy-clay prepolymers were further modified separately with 15 wt% of bismaleimide (BMI) monomers and cured with diaminodiphenylmethane. The reactions involved during the curing process between epoxy resin, siloxane and BMI were confirmed by using FTIR and DSC curing analysis. The differential scanning calorimetry (DSC) show that the significant increase in glass transition temperatures in the clay filled hybrid epoxy systems than that of neat epoxy resin. The data obtained from thermal studies indicates that the appreciable improvement in hybrid systems was due to the incorporation of MMT clay, BMI and siloxane into epoxy systems. Scanning electron microscopy (SEM) of the hybrid systems show that the homogenous morphology. X-ray diffraction analysis of the clay hybrid systems shows that the amorphous diffraction patterns and the peaks are broadened and nearly disappeared after 24 h swelling, suggesting the formation of exfoliated structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Messersmith PB, Strupp SI (1992) Synthesis of nanocomposites: organoceramics. J Mater Res 7:2599

    Article  CAS  Google Scholar 

  2. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29

    Article  CAS  Google Scholar 

  3. Zilg C, Mulhaupt R, Finter J (1999) Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol Chem Phys 200:661

    Article  CAS  Google Scholar 

  4. Schmidt H (1985) New type of non-crystalline solids between inorganic and organic materials. J Non-Cryst Solids 73:681

    Article  CAS  Google Scholar 

  5. Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5:422

    Article  CAS  Google Scholar 

  6. Pinnavaia TJ (1983) Intercalated clay catalysts. Science 220:365

    Article  CAS  Google Scholar 

  7. Giannelis EP (1992) A new strategy for synthesizing polymer—ceramic nanocomposites. JOM 44:28

    CAS  Google Scholar 

  8. Usuki A, Kojoma Y, Kawasumi M, Okada A (1987) Synthesis and characterization of a nylon 6-calay hyprid. Polym Prep 28:447

    Google Scholar 

  9. Robello DR, Yamaguchi N, Blanton T, Bames C (2004) Spontaneous formation of an exfoliated polystyrene-clay nanocomposite using a star-shaped polymer. J Amer Chem Soc 126:8118

    Article  CAS  Google Scholar 

  10. Usuki A, Kojima Y, Kawaskumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J Mater Res 8:1174

    Article  CAS  Google Scholar 

  11. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon6-clay hybrid. J Mater Res 8:1185

    Article  CAS  Google Scholar 

  12. Chern YC, Hsieh KH, Hsu JS (1997) Interpenetrating polymer networks of polyurethane cross-linked epoxy and polyurethanes. J Mater Sci 32:3503

    Article  CAS  Google Scholar 

  13. Salahuddin NA (2004) Layered silicate /epoxy nanocomposites: synthesis, charcterzation and properties. Polym Adv Technol 15:251

    Article  CAS  Google Scholar 

  14. Messersmith PB, Giannelis EP (1994) Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem Mater 6:1719

    Article  CAS  Google Scholar 

  15. Wang MS, Pinnavaia TJ (1994) Clay-polymer nanocomposites formed from acidic derivatives of montmorillonite and an epoxy resin. Chem Mater 6:468

    Article  CAS  Google Scholar 

  16. Shi H, Lan T, Pinnavaia TJ (1996) Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites. Chem Mater 8:1584

    Article  CAS  Google Scholar 

  17. Lan T, Kaviratna PD, Pinnavaia TJ (1995) Mechanism of clay tactoid exfoliation in epoxy - clay nanocomposites. Chem Mater 7:2144

    Article  CAS  Google Scholar 

  18. Ashok KA, Alagar M, Rao RMVGK (2002) Synthesis and characterization of siliconized epoxy—1,3 bis (maleimido) benzene intercrosslinked matrix materials. Polymer 43:693

    Article  Google Scholar 

  19. Lee A, Lichtenhan JD (1999) Thermal and viscoelastic property of epoxy—clay and hybrid inorganic—organic epoxy nanocomposites. J Appl Polym Sci 73:1993

    Article  CAS  Google Scholar 

  20. Kornmann X, Thomann R, Mulhaupt R, Fonter J, Berglund LA (2002) High performance epoxy—layered silicate nanocomposites. Polym Eng Sci 42:1815

    Article  CAS  Google Scholar 

  21. Cazacu M, Marcu M, Vlad A, Caralman D, Racles C (1999) Synthesis of functional telechelic polydimethyl siloxanes by ion—exchange catalysis. Eur Polym J 35:1629

    Article  CAS  Google Scholar 

  22. Dinakaran K, Alagar MK (2003) Preparation and characterization of epoxy—cyanate ester interpenetrating network matrices/organoclay nanocomposites. Poly Adv Tech 14:574

    Article  CAS  Google Scholar 

  23. Mustata F, Bichu I (2000) Multifunctional epoxy resins: synthesis and characterization. J Appl Polym Sci 77:2430

    Article  CAS  Google Scholar 

  24. Liu W, Varley RJ, Simon GP (2006) Phosphrous—containing diamine for flame retardancy of high functionality epoxy resins. Part -II. The thermal and mechanical properties of mixed amine systems. Polymer 47:2091

    Article  CAS  Google Scholar 

  25. Hussain M, Varley RJ, Mathys Z, Cheng YB, Simon GP (2004) Effect of organo-phosphorus and nano-clay materials on the thermal and fire performance of epoxy resins. J App Polym Sci 91:1233

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Department of Science and Technology (DST), New Delhi-110 016 for financial support (Ref. No. SR/S3/ME/ 21/2002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selvaganapathi Anbazhagan or Muthukaruppan Alagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbazhagan, S., Alagar, M. & Gnanasundaram, P. Synthesis and characterization of organic-inorganic hybrid clay filled and bismaleimide—siloxane modified epoxy nanocomposites. Int J Plast Technol 15 (Suppl 1), 30–45 (2011). https://doi.org/10.1007/s12588-011-9004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-011-9004-2

Keywords

Navigation