Skip to main content
Log in

Early-Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt

  • Structural Geology and Thermochronology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The end-Permian to Early-Middle Triassic magmatic rocks in Inner Mongolia can provide valuable insights into the relationships between the collisional processes and the magmatic responses during the final orogenic evolution of Xing-Meng orogenic belt (XMOB). This paper presents zircon U-Pb ages and Hf isotopes, whole rock geochemical and Sr-Nd-Pb isotopic data for the Early-Middle Triassic diabases and monzogranites from the Langshan area, southwestern XMOB. Our results suggest that the studied diabases and monzogranites were respectively formed during Early Triassic and Middle Triassic. The Early Triassic diabases are characterized by “arc-like” geochemical signatures, including enrichment in Rb, U and K, and depletion in Nb, Ta, P and Ti. They have negative to weak positive εNd (t) values (−3.1 to +1.5) and relatively high initial ratios of 208Pb/204Pb (35.968–37.346), 207Pb/204Pb (15.448–15.508) and 206Pb/204Pb (16.280–17.492), indicating a subduction-metasomatized enriched lithospheric mantle source. Their low Ba/Rb (2.72–6.56), Ce/Y (0.97–1.39) and (Tb/Yb)N ratios (1.31–1.45) suggest that the parental magma was likely originated from low degree partial melting of the phlogopite-bearing lherzolite in a spinel-stability field. The Middle Triassic monzogranites show high Sr/Y ratios, low MgO, Cr and Ni contents, high Zr/Sm ratios (40–64), negative zircon εHf(t) values (−25.8 to −8.8), as well as relatively flat heavy rare earth element patterns. They were likely derived from low degree partial melting of a moderately thickened ancient lower crust. The diabases and the slightly postdated high Sr/Y granites in this study represent the magmatic responses to the final orogenic evolution in the southwestern XMOB. Together with regional works, we propose that the slab break-off of the Paleo-Asian oceanic lithosphere following the terminal collision between the North China Craton and the South Mongolia terranes triggered asthenospheric upwelling, and the ongoing convergence further initiated moderately crustal thickening and uplift in the XMOB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x

    Google Scholar 

  • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144–146. https://doi.org/10.1038/362144a0

    Google Scholar 

  • Bao, Z. A., Chen, L., Zong, C. L., et al., 2017. Development of Pressed Sulfide Powder Tablets for in situ Sulfur and Lead Isotope Measurement Using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255–262. https://doi.org/10.1016/j.ijms.2017.07.015

    Google Scholar 

  • Boynton, W. V., 1984. Cosmo chemistry of the Rare Earth Elements: Meteorite Studiess. In: Henderson, P. E., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63–114

    Google Scholar 

  • Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134/135(3): 304–316. https://doi.org/10.1016/j.lithos.2011.09.013

    Google Scholar 

  • Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33–51. https://doi.org/10.1007/s004100050467

    Google Scholar 

  • Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1–36. https://doi.org/10.1144/sp318.1

    Google Scholar 

  • Chen, B., Ma, X. H., Liu, A. K., et al., 2009. Zircon U-Pb Ages of the Xil-inhot Metamorphic Complex and Blueschist and Implications for Tectonic Evolution of the Solonker Suture. Acta Petrologica Sinica, 25(12): 3123–3129 (in Chinese with English Abstract)

    Google Scholar 

  • Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021–1024. https://doi.org/10.1130/gl9796.1

    Google Scholar 

  • Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4): 228–242. https://doi.org/10.1016/j.gr.2008.06.001

    Google Scholar 

  • Darby, B. J., Ritts, B. D., 2007. Mesozoic Structural Architecture of the Lang Shan, North-Central China: Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 29(12): 2006–2016. https://doi.org/10.1016/jjsg.2007.06.011

    Google Scholar 

  • Davis, G. A., Xu, B., Zheng, Y. D., et al., 2004. Indosinian Extension in the Solonker Suture Zone: The Sonid Zuoqi Metamorphic Core Complex, Inner Mongolia, China. Earth Science Frontiers, 11(3): 135–143. https://doi.org/10.1007/bfD2873097

    Google Scholar 

  • de Jong, K., Xiao, W., Windley, B. F., et al., 2006. Ordovician 40Ar/39Ar Phengite Ages from the Blueschist-Facies Ondor Sum Subduction-Accretion Complex (Inner Mongolia) and Implications for the Early Paleozoic History of Continental Blocks in China and Adjacent Areas. American Journal of Science, 306(10): 799–845. https://doi.org/10.2475/10.2006.02

    Google Scholar 

  • Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphère. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0

    Google Scholar 

  • Duggen, S., Hoernle, K., van den Bogaard, P., et al., 2005. Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delami-nation of Subcontinental Lithosphère. Journal of Petrology, 46(6): 1155–1201. https://doi.org/10.1093/petrology/egi013

    Google Scholar 

  • Eizenhöfer, P. R., Zhao, G. C., Zhang, J., et al., 2014. Final Closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from Geochronological and Geochemical Data of Permian Volcanic and Sedimentary Rocks. Tectonics, 33(4): 441–463. https://doi.org/10.1002/2013tc003357

    Google Scholar 

  • Eizenhöfer, P. R., Zhao, G. C., Zhang, J., et al., 2015. Geochemical Characteristics of the Permian Basins and Their Provenances Across the Solonker Suture Zone: Assessment of Net Crustal Growth during the Closure of the Palaeo-Asian Ocean. Lithos, 224/225: 240–255. https://doi.org/10.1016/j.lithos.2015.03.012

    Google Scholar 

  • Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77. https://doi.org/10.1130/gl9887.1

    Google Scholar 

  • Foley, S. F., Jackson, S. E., Fryer, B. J., et al., 1996. Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lam-prophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cos-mochimica Acta, 60(4): 629–638. https://doi.org/10.1016/0016-7037(95)00422-x

    Google Scholar 

  • Furman, T., Graham, D., 1999. Erosion of Limospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1/2/3/4): 237–262. https://doi.org/10.1016/s0024-4937(99)00031-6

    Google Scholar 

  • Gao, S., Liu, X. M., Yuan, H. L., et al., 2002. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostan-dards and Geoanalytical Research, 26(2): 181–196. https://doi.org/10.1111/j.1751-908x.2002.tb00886.x

    Google Scholar 

  • Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971): 753–757. https://doi.org/10.1038/309753a0

    Google Scholar 

  • Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027

    Google Scholar 

  • Hu, J. M., Gong, W. B., Wu, S. J., et al., 2014. LA-ICP-MS Zircon U-Pb Dating of the Langshan Group in the Normeast Margin of the Alxa Block, with Tectonic Implications. Precambrian Research, 255: 756–770. https://doi.org/10.1016/j.precamres.2014.08.013

    Google Scholar 

  • Ionov, D. A., Griffin, W. L., O’Reilly, S. Y., 1997. Volatile-Bearing Minerals and Limophile Trace Elements in the Upper Mantle. Chemical Geology, 141(3/4): 153–184. https://doi.org/10.1016/s0009-2541(97)00061-2

    Google Scholar 

  • Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055

    Google Scholar 

  • Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181–193. https://doi.org/10.1017/s0263593300007367

    Google Scholar 

  • Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3/4): 233–259. https://doi.org/10.1016/j.lithos.2007.07.005

    Google Scholar 

  • Jian, P., Liu, D. Y., Kröner, A., et al., 2010. Evolution of a Permian Intrao-ceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1/2): 169–190. https://doi.org/10.1016/j.lithos.2010.04.014

    Google Scholar 

  • Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2010. Pedogenesis and Tectonic Implications of Late Jurassic Shoshonitic Lamprophyre Dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 100(3/4): 127–151. https://doi.org/10.1007/s00710-010-0124-8

    Google Scholar 

  • Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3): 177–189. https://doi.org/10.1016/0040-1951(93)90295-u

    Google Scholar 

  • Li, H. K., Geng, J. Z., Hao, S., et al., 2009. The Study of Zircon U-Pb Dating by Means LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 28 Suppl.): 77 in Chinese)

    Google Scholar 

  • Li, S., Chung, S. L., Wilde, S. A., et al., 2016a. Linking Magmatism with Collision in an Accretionary Orogen. Scientific Reports, 6(1): 25751. https://doi.org/10.1038/srep25751

    Google Scholar 

  • Li, S., Wilde, S. A., Wang, T., et al., 2016b. Latest Early Permian Granitic Magmatism in Southern Inner Mongolia, China: Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Gond-wanaResearch, 29(1): 168–180. https://doi.org/10.1016/j.gr.2014.11.006

    Google Scholar 

  • Li, S., Chung, S. L., Wilde, S. A., et al., 2017. Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens. Journal of Geophysical Research: Solid Earth, 163(6): 2291–2309. https://doi.org/10.1002/2017jb014006

    Google Scholar 

  • Li, S., Wilde, S. A., He, Z. H., et al., 2014. Triassic Sedimentation and Postaccretionary Crustal Evolution along the Solonker Suture Zone in Inner Mongolia, China. Tectonics, 33(6): 960–981. https://doi.org/10.1002/2013tc003444

    Google Scholar 

  • Lin, L. N., Xiao, W. J., Wan, B., et al., 2014. Geo chrono logic and Geo-chemical Evidence for Persistence of South-Dipping Subduction to Late Permian Time, Langshan Area, Inner Mongolia China): Significance for Termination of Accretionary Orogenesis in the Southern Al-taids. American Journal of Science, 314(2): 679–703. https://doi.org/10.2475/02.2014.08

    Google Scholar 

  • Liu, J. F., Li, J. Y., Chi, X. G., et al., 2013. A Late-Carboniferous to Early Early-Permian Subduction-Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia: Evidence of Northward Subduction beneath the Siberian Paleoplate Southern Margin. Lithos, 177: 285–296. https://doi.org/10.1016/j.lithos.2013.07.008

    Google Scholar 

  • Liu, M., Zhang, D., Xiong, G. Q., et al., 2016. Zircon U-Pb Age, Hf Isotope and Geochemistry of Carboniferous Intrusions from the Langshan Area, Inner Mongolia: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 120: 139–158. https://doi.org/10.1016/jjseaes.2016.01.005

    Google Scholar 

  • Liu, Y. S., Wang, X. H., Wang, D. B., et al., 2012. Triassic High-Mg Ada-kitic Andésites from Linxi, Inner Mongolia: Insights into the Fate of the Paleo-Asian Ocean Crust and Fossil Slab-Derived Melt-Peridotite Interaction. Chemical Geology, 328: 89–108. https://doi.org/10.1016/j.chemgeo.2012.03.019

    Google Scholar 

  • Liu, Y., 2012. Geochemical and Chronological Characteristics of the Granitic Gneisses and Intrusive Rocks from Dongshengmiao Region, Inner Mongolia and Their Tectonic Implications: [Dissertation]. Lanzhou University, Lanzhou. 1–4 (in Chinese)

    Google Scholar 

  • Ludwig, K. R., 2003. ISOPLOT 3.0: A Geo chrono logical Toolkit for Microsoft Excel. Geochronology Center: Special Publication, Berkeley. 4

    Google Scholar 

  • Luo, Z. W., Xu, B., Shi, G. Z, et al., 2016. Solonker Ophiolite in Inner Mongolia, China: A Late Permian Continental Margin-Type Ophiolite. Lithos, 261: 72–91. https://doi.org/10.1016/j.lithos.2016.03.001

    Google Scholar 

  • Ma, L., Jiang, S. Y., Hofinann, A. W., et al., 2014. Lithospheric and As-thenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 124: 250–271. https://doi.org/10.1016/j.gca.2013.09.035

    Google Scholar 

  • Ma, S. W., Liu, C. F., Xu, Z. Q, et al., 2017. Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 28(2): 249–264. https://doi.org/10.1007/sl2583-016-0912-2

    Google Scholar 

  • Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalité-Trondhjemite-Granodiorite TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048

    Google Scholar 

  • McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphère. Journal of Petrology, 29(3): 625–679. https://doi.org/10.1093/petrology/29.3.625

    Google Scholar 

  • Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5/6): 348–370. https://doi.org/10.1016/j.jseaes.2007.11.005

    Google Scholar 

  • Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9

    Google Scholar 

  • Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bfD0384745

    Google Scholar 

  • Peng, R. M., Zhai, Y. S., Li, C. S., et al., 2013. The Erbutu Ni-Cu Deposit in the Central Asian Orogenic Belt: A Permian Magmatic Sulfide Deposit Related to Boninitic Magmatism in an Arc Setting. Economic Geology, 108(8): 1879–1888. https://doi.org/10.2113/econgeo.108.8.1879

    Google Scholar 

  • Peng, R. M., Zhai, Y. S., Wang, J. P., et al., 2010. Discovery of Neopro-terozoic Acid Volcanic Rock in the South-Western Section of Langshan, Inner Mongolia. Chinese Science Bulletin, 55(26): 2611–2620. in Chinese with English Abstract)

    Google Scholar 

  • Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Under-plated Basaltic Crust: The Cordillera Bianca Batholith, Peru. Journal of Petrology, 37(6): 1491–1521. https://doi.org/10.1093/petrology/37.6.1491

    Google Scholar 

  • Pi, Q. H., Liu, C. Z., Chen, Y. L., et al., 2010. Formation Epoch and Genesis of Intrusive Rocks in Huogeqi Ore Field of Inner Mongolia and Their Relationship with Copper Mineralization. Mineral Deposits, 29(3): 437 51 in Chinese with English Abstract)

    Google Scholar 

  • Prouteau, G., Scaillet, B., 2003. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology, 44(12): 2203–2241. https://doi.org/10.1093/petrology/egg075

    Google Scholar 

  • Qian, Q., Hermann, J., 2013. Partial Melting of Lower Crust at 10–15 kbar: Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 165(6): 1195–1224. https://doi.org/10.1007/s00410-013-0854-9

    Google Scholar 

  • Rapp, R. P., Shimizu, N., Norman, M. D, 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958): 605–609. https://doi.org/10.1038/nature02031

    Google Scholar 

  • Rickwood, P. C., 1989. Boundary Lines wimin Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247–263. https://doi.org/10.1016/0024-4937(89)90028-5

    Google Scholar 

  • Robinson, P. T., Zhou, M. F., Hu, X. F., et al., 1999. Geochemical Constraints on the Origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4): 423 -42. https://doi.org/10.1016/sl367-9120(99)00016-4

    Google Scholar 

  • Schulmann, K., Paterson, S., 2011. Asian Continental Growth. Nature Geo-science, 4(12): 827–829. https://doi.org/10.1038/ngeol339

    Google Scholar 

  • Song, S. G., Wang, M. M., Xu, X., et al., 2015. Ophiolites in the Xing’an-Inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary Orogenic Events. Tectonics, 34(10): 2221–2248. https://doi.org/10.1002/2015tc003948

    Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Google Scholar 

  • Thirlwall, M. F., Smith, T. E., Graham, A. M., et al., 1994. High Field Strength Element Anomalies in Arc Lavas: Source or Process?. Journal of Petrology, 35(3): 819–838. https://doi.org/10.1093/petrology/353.819

    Google Scholar 

  • van de Zedde, D. M. A., Wortel, M. J. R., 2001. Shallow Slab Detachment as a Transient Source of Heat at Midlithospheric Depths. Tectonics, 20(6): 868–882. https://doi.org/10.1029/2001tc900018

    Google Scholar 

  • Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119–144. https://doi.org/10.1093/petrology/egi070

    Google Scholar 

  • Wang, Z. J., Xu, W. L., Pei, F. P., et al., 2015a. Geochronology and Geochemistry of Middle Permian-Middle Triassic Intrusive Rocks from Central-Eastern Jilin Province, NE China: Constraints on the Tectonic Evolution of the Eastern Segment of the Paleo-Asian Ocean. Lithos, 238: 13–25. https://doi.org/10.1016/j.lithos.2015.09.019

    Google Scholar 

  • Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2015b. Geochronology, Geochemistry and Origins of the Paleozoic-Trias sic Plutons in the Lang-shan Area, Western Inner Mongolia, China. Journal of Asian Earth Sciences, 97: 337–351. https://doi.org/10.1016/jjseaes.2014.08.005

    Google Scholar 

  • Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2016. Tectonic Attribution of the Langshan Area in Western Inner Mongolia and Implications for the Neoarchean-Paleoproterozoic Evolution of the Western Norm China Craton: Evidence from LA-ICP-MS Zircon U-Pb Dating of the Langshan Basement. Lithos, 261: 278–295. https://doi.org/10.1016/j.lithos.2016.03.005

    Google Scholar 

  • Wilde, S. A, 2015. Final Amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean Closure versus Paleo-Pacifïc Plate Subduction—A Review of the Evidence. Tectonophysics, 662: 345–362. https://doi.org/10.1016/j.tecto.2015.05.006

    Google Scholar 

  • Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022

    Google Scholar 

  • Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1–8. https://doi.org/10.1029/2002tc001484

    Google Scholar 

  • Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477–507. https://doi.org/10.1146/annurev-earth-060614-105254

    Google Scholar 

  • Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342–1364. https://doi.org/10.1016/j.gr.2012.05.015

    Google Scholar 

  • Yu, Y., Sun, M., Huang, X. L., et al., 2017. Sr-Nd-Hf-Pb Isotopic Evidence for Modification of the Devonian Limospheric Mantle beneath the Chinese Altai. Lithos, 284/285: 207–221. https://doi.org/10.1016/j.lithos.2017.04.004

    Google Scholar 

  • Yuan, H. L., Gao, S., Dai, M. N, et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100–118. https://doi.org/10.1016/j.chemgeo.2007.10.003

    Google Scholar 

  • Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x

    Google Scholar 

  • Yuan, W., Yang, Z. Y., 2015. The Alashan Terrane was not Part of North China by the Late Devonian: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 27(3): 1270–1282. https://doi.org/10.1016/j.gr.2013.12.009

    Google Scholar 

  • Zeng, Q. D., Yang, J. H., Zhang, Z. L., et al., 2013. Petrogenesis of the Yangchang Mo-Bearing Granite in the Xilamulun Metallogenic Belt, NE China: Geochemistry, Zircon U-Pb Ages and Sr-Nd-Pb Isotopes. Geological Journal, 49(1): 1–14. https://doi.org/10.1002/gj.2481

    Google Scholar 

  • Zhang, J. R., Wei, C. J., Chu, H., et al., 2016a. Mesozoic Metamorphism and Its Tectonic Implication along the Solonker Suture Zone in Central Inner Mongolia, China. Lithos, 261: 262–277. https://doi.org/10.1016/j.lithos.2016.03.014

    Google Scholar 

  • Zhang, J., Zhang, B. H., Zhao, H., 2016b. Timing of Amalgamation of the Alxa Block and the North China Block: Constraints Based on Detrital Zircon U-Pb Ages and Sedimentologic and Structural Evidence. Tec-tonophysics, 668/669: 65–81. https://doi.org/10.1016/j.tecto.2015.12.006

    Google Scholar 

  • Zhang, J., Li, J. Y., Xiao, W. J., et al., 2013. Kinematics and Geochronology of Multistage Ductile Deformation along the Eastern Alxa Block, NW China: New Constraints on the Relationship between the North China Plate and the Alxa Block. Journal of Structural Geology, 57: 38–57. https://doi.org/10.1016/jjsg.2013.10.002

    Google Scholar 

  • Zhang, S. H., Zhao, Y., Davis, G. A., et al., 2014a. Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratoni-zation. Earth-Science Reviews, 131: 49–87. https://doi.org/10.1016/j.earscirev.2013.12.004

    Google Scholar 

  • Zhang, S. H., Gao, R., Li, H. Y., et al., 2014b. Crustal Structures Revealed from a Deep Seismic Reflection Profile Across the Solonker Suture Zone of the Central Asian Orogenic Belt, Northern China: An Integrated Interpretation. Tectonophys ics, 612/613: 26–39. https://doi.org/10.1016/j.tecto.2013.11.035

    Google Scholar 

  • Zhang, S. H., Zhao, Y., Ye, H., et al., 2014c. Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9/10): 1275–1300. https://doi.org/10.1130/b31042.1

    Google Scholar 

  • Zhang, S. H., Zhao, Y., Song, B., et al., 2009a. Contrasting Late Carboniferous and Late Permian-Middle Triassic Intrusive Suites from the Northern Margin of the North China Craton: Geochronology, Petrogenesis, and Tectonic Implications. Geological Society of America Bulletin, 121: 181–200. https://doi.org/10.1130/b26157.1

    Google Scholar 

  • Zhang, S. H., Zhao, Y., Liu, X. C., et al., 2009b. Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block: Constraints on the Composition and Evolution of the Lithospheric Mantle. Lithos, 110(1/2/3/4): 229–246. https://doi.org/10.1016/j.lithos.2009.01.008

    Google Scholar 

  • Zhang, S. H., Zhao, Y., Ye, H., et al., 2012. Early Mesozoic Alkaline Complexes in the Northern North China Craton: Implications for Cratonic Lithospheric Destruction. Lithos, 155: 1–18. https://doi.org/10.1016/j.lithos.2012.08.009

    Google Scholar 

  • Zhang, X. B., Wang, K. Y., Wang, C. Y., et al., 2017. Age, Genesis, and Tectonic Setting of the Mo-W Mineralized Dongshanwan Granite Porphyry from the Xilamulun Metallogenic Belt, NE China. Journal of Earth Science, 28(3): 433–446. https://doi.org/10.1007/sl2583-016-0934-1

    Google Scholar 

  • Zhang, X. H., Mao, Q., Zhang, H. F., et al., 2011. Mafic and Felsic Magma Interaction during the Construction of High-K Calc-Alkaline Plutons within a Metacratonic Passive Margin: The Early Permian Guyang Batholith from the Northern North China Craton. Lithos, 125(1/2): 569–591. https://doi.org/10.1016/j.lithos.2011.03.008

    Google Scholar 

  • Zhao, J. H., Asimow, P. D., 2014. Neoproterozoic Boninite-Series Rocks in South China: A Depleted Mantle Source Modified by Sediment-Derived Melt. Chemical Geology, 388: 98–111. https://doi.org/10.1016/j.chemgeo.2014.09.004

    Google Scholar 

  • Zhao, X. C., Zhou, W. X., Fu, D., et al., 2018. Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China. Journal of Earth Science, 29(2): 280–294. https://doi.org/10.1007/sl2583-017-0942-2

    Google Scholar 

  • Zhou, J. B., Wilde, S. A, 2013. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Oogenic Belt. Gondwana Research, 23(4): 1365–1377. https://doi.org/10.1016/j.gr.2012.05.012

    Google Scholar 

  • Zindler, A., Hart, S. R., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425

    Google Scholar 

  • Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33–47. https://doi.org/10.1016/s0009-2541(00)00243-6

    Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the Geological Survey of China (No. 1212011085490) and the National Natural Science Foundation of China (No. 41421002). We sincerely thank the editors and the anonymous reviewers for their critical and constructive comments. We are grateful to Guangqiang Xiong, Hongtao Zhao, Quanliu Chen, and Zhong Wang for their help with the field work. We thank Yu Zhu, Fangyi Zhang and Zezhong Zhang for their laboratory assistance. We also appreciate Yuan Yuan and Yaoyao Zhang for their insightful suggestions. The final publication is available at Springer via https://doi.org/10.1007/sl2583-019-1015-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaocong Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Lai, S., Zhang, D. et al. Early-Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt. J. Earth Sci. 30, 977–995 (2019). https://doi.org/10.1007/s12583-019-1015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-1015-5

Key words

Navigation