Skip to main content
Log in

A fractal measure of spatial association between landslides and conditioning factors

  • Invited Article
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Measuring the relative importance and assigning weights to conditioning factors of landslides occurrence are significant for landslide prevention and/or mitigation. In this contribution, a fractal method is introduced for measuring the spatial relationships between landslides and conditioning factors (such as faults, rivers, geological boundaries, and roads), and for assigning weights to conditioning factors for mapping of landslide susceptibility. This method can be expressed as ρ= –d, where d is the fractal dimension, and C is a constant. This relationship indicates a fractal relation between landslide density (ρ) and distances to conditioning factors (ε). The case of d>0 suggests a significant spatial correlation between landslides and conditioning factors. The larger the d (>0) value, the stronger the spatial correlation is between landslides and a specific conditioning factor. Two case studies in South China were examined to demonstrate the usefulness of this novel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Agterberg, F. P., 2012. Multifractals and Geostatistics. Journal of Geochemical Exploration, 122: 113–122. doi:10.1016/j.gexplo.2012.04.001

    Article  Google Scholar 

  • Agterberg, F. P., 2013. Fractals and Spatial Statistics of Point Patterns. Journal of Earth Science, 24(1): 1–11. doi:10.1007/s12583-013-0305-6

    Article  Google Scholar 

  • Alimohammadlou, Y., Najafi, A., Gokceoglu, C., 2014. Estimation of Rainfall-Induced Landslides Using ANN and Fuzzy Clustering Methods: A Case Study in Saeen Slope, Azerbaijan Province, Iran. Catena, 120: 149–162. doi:10.1016/j.catena.2014.04.009

    Article  Google Scholar 

  • Althuwaynee, O. F., Pradhan, B., Lee, S., 2012. Application of an Evidential Belief Function Model in Landslide Susceptibility Mapping. Computers & Geosciences, 44: 120–135. doi:10.1016/j.cageo.2012.03.003

    Article  Google Scholar 

  • Barrile, V., Cirianni, F., Leonardi, G., et al., 2016. A Fuzzy-Based Methodology for Landslide Susceptibility Mapping. Procedia—Social and Behavioral Sciences, 223: 896–902. doi:10.1016/j.sbspro.2016.05.309

    Article  Google Scholar 

  • Blenkinsop, T., 2014. Scaling Laws for the Distribution of Gold, Geothermal, and Gas Resources. Pure and Applied Geophysics, 172(7): 2045–2056. doi:10.1007/s00024-014-0909-5

    Article  Google Scholar 

  • Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111. doi:10.1130/0091-7613(1991)019<0111:sdood>2.3.co;2

    Article  Google Scholar 

  • Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314–324. doi:10.1016/j.oregeorev.2006.10.002

    Article  Google Scholar 

  • Cheng, Q. M., 2008. Modeling Local Scaling Properties for Multiscale Mapping. Vadose Zone Journal, 7(2): 525. doi:10.2136/vzj2007.0034

    Article  Google Scholar 

  • Cheng, Q. M., 2012. Singularity Theory and Methods for Mapping Geochemical Anomalies Caused by Buried Sources and for Predicting Undiscovered Mineral Deposits in Covered Areas. Journal of Geochemical Exploration, 122: 55–70. doi:10.1016/j.gexplo.2012.07.007

    Article  Google Scholar 

  • Cheng, Q. M., Agterberg, F. P., 1995. Multifractal Modeling and Spatial Point Processes. Mathematical Geology, 27(7): 831–845. doi:10.1007/bf02087098

    Article  Google Scholar 

  • Faraji Sabokbar, H., Shadman Roodposhti, M., Tazik, E., 2014. Landslide Susceptibility Mapping Using Geographically-Weighted Principal Component Analysis. Geomorphology, 226: 15–24. doi:10.1016/j.geomorph.2014.07.026

    Article  Google Scholar 

  • Ghosh, S., Carranza, E. J. M., 2010. Spatial Analysis of Mutual Fault/Fracture and Slope Controls on Rocksliding in Darjeeling Himalaya, India. Geomorphology, 122(1/2): 1–24. doi:10.1016/j.geomorph.2010.05.008

    Article  Google Scholar 

  • Ghosh, S., Carranza, E. J. M., van Westen, C. J., et al., 2011. Selecting and Weighting Spatial Predictors for Empirical Modeling of Landslide Susceptibility in the Darjeeling Himalayas (India). Geomorphology, 131(1/2): 35–56. doi:10.1016/j.geomorph.2011.04.019

    Article  Google Scholar 

  • Ghosh, S., Günther, A., Carranza, E. J. M., et al., 2010. Rock Slope Instability Assessment Using Spatially Distributed Structural Orientation Data in Darjeeling Himalaya (India). Earth Surface Processes and Landforms, 35(15): 1773–1792. doi:10.1002/esp.2017

    Article  Google Scholar 

  • Ghosh, S., van Westen, C. J., Carranza, E. J. M., et al., 2009. A Quantitative Approach for Improving the BIS (Indian) Method of Medium-Scale Landslide Susceptibility. Journal of the Geological Society of India, 74(5): 625–638. doi:10.1007/s12594-009-0167-9

    Article  Google Scholar 

  • Ghosh, S., van Westen, C. J., Carranza, E. J. M., et al., 2012a. Integrating Spatial, Temporal, and Magnitude Probabilities for Medium-Scale Landslide Risk Analysis in Darjeeling Himalayas, India. Landslides, 9(3): 371–384. doi:10.1007/s10346-011-0304-6

    Article  Google Scholar 

  • Ghosh, S., van Westen, C. J., Carranza, E. J. M., et al., 2012b. Generating Event-Based Landslide Maps in a Data-Scarce Himalayan Environment for Estimating Temporal and Magnitude Probabilities. Engineering Geology, 128: 49–62. doi:10.1016/j.enggeo.2011.03.016

    Article  Google Scholar 

  • Gorum, T., Carranza, E. J. M., 2015. Control of Style-of-Faulting on Spatial Pattern of Earthquake-Triggered Landslides. International Journal of Environmental Science and Technology, 12(10): 3189–3212. doi:10.1007/s13762-015-0752-y

    Article  Google Scholar 

  • Guzzetti, F., Malamud, B. D., Turcotte, D. L., et al., 2002. Power-Law Correlations of Landslide Areas in Central Italy. Earth and Planetary Science Letters, 195(3/4): 169–183. doi:10.1016/s0012-821x(01)00589-1

    Article  Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., et al., 2005. Probabilistic Landslide Hazard Assessment at the Basin Scale. Geomorphology, 72(1/2/3/4): 272–299. doi:10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Hong, H. Y., Pourghasemi, H. R., Pourtaghi, Z. S., 2016. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology, 259: 105–118. doi:10.1016/j.geomorph.2016.02.012

    Article  Google Scholar 

  • Hong, H. Y., Pradhan, B., Xu, C., et al., 2015. Spatial Prediction of Landslide Hazard at the Yihuang Area (China) Using Two-Class Kernel Logistic Regression, Alternating Decision Tree and Support Vector Machines. Catena, 133: 266–281. doi:10.13039/501100001809

    Article  Google Scholar 

  • Iwahashi, J., Watanabe, S., Furuya, T., 2003. Mean Slope-Angle Frequency Distribution and Size Frequency Distribution of Landslide Masses in Higashikubiki Area, Japan. Geomorphology, 50(4): 349–364. doi:10.1016/s0169-555x(02)00222-2

    Article  Google Scholar 

  • Kawabata, D., Bandibas, J., 2009. Landslide Susceptibility Mapping Using Geological Data: A DEM from ASTER Images and an Artificial Neural Network (ANN). Geomorphology, 113(1/2): 97–109. doi:10.1016/j.geomorph.2009.06.006

    Article  Google Scholar 

  • Lee, S., Hwang, J., Park, I., 2013. Application of Data-Driven Evidential Belief Functions to Landslide Susceptibility Mapping in Jinbu, Korea. Catena, 100: 15–30. doi:10.1016/j.catena.2012.07.014

    Article  Google Scholar 

  • Lee, S., Ryu, J. H., Won, J. S., et al., 2004. Determination and Application of the Weights for Landslide Susceptibility Mapping Using an Artificial Neural Network. Engineering Geology, 71(3/4): 289–302. doi:10.1016/s0013-7952(03)00142-x

    Article  Google Scholar 

  • Lee, Y. F., Chi, Y. Y., 2011. Rainfall-Induced Landslide Risk at Lushan, Taiwan. Engineering Geology, 123(1/2): 113–121. doi:10.1016/j.enggeo.2011.03.006

    Article  Google Scholar 

  • Li, C. J., Ma, T. H., Zhu, X. S., et al., 2011. The Power-Law Relationship between Landslide Occurrence and Rainfall Level. Geomorphology, 130(3/4): 221–229. doi:10.1016/j.geomorph.2011.03.018

    Article  Google Scholar 

  • Malamud, B. D., Turcotte, D. L., Guzzetti, F., et al., 2004. Landslide Inventories and Their Statistical Properties. Earth Surface Processes and Landforms, 29(6): 687–711. doi:10.1002/esp.1064

    Article  Google Scholar 

  • Oh, H. J., Pradhan, B., 2011. Application of a Neuro-Fuzzy Model to Landslide-Susceptibility Mapping for Shallow Landslides in a Tropical Hilly Area. Computers & Geosciences, 37(9): 1264–1276. doi:10.1016/j.cageo.2010.10.012

    Article  Google Scholar 

  • Pelletier, J. D., Malamud, B. D., Blodgett, T., et al., 1997. Scale-Invariance of Soil Moisture Variability and Its Implications for the Frequency-Size Distribution of Landslides. Engineering Geology, 48(3/4): 255–268. doi:10.1016/s0013-7952(97)00041-0

    Article  Google Scholar 

  • Poli, S., Sterlacchini, S., 2007. Landslide Representation Strategies in Susceptibility Studies Using Weights-of-Evidence Modeling Technique. Natural Resources Research, 16(2): 121–134. doi:10.1007/s11053-007-9043-8

    Article  Google Scholar 

  • Pradhan, B., 2013. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS. Computers & Geosciences, 51: 350–365. doi:10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  • Pradhan, B., Lee, S., 2010. Landslide Susceptibility Assessment and Factor Effect Analysis: Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modelling. Environmental Modelling & Software, 25(6): 747–759. doi:10.1016/j.envsoft.2009.10.016

    Article  Google Scholar 

  • Raines, G. L., 2008. Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful?. Natural Resources Research, 17(2): 87–97. doi:10.1007/s11053-008-9067-8

    Article  Google Scholar 

  • Rouai, M., Jaaidi, E. B., 2003. Scaling Properties of Landslides in the Rif Mountains of Morocco. Engineering Geology, 68(3/4): 353–359. doi:10.1016/s0013-7952(02)00237-5

    Article  Google Scholar 

  • Trigila, A., Iadanza, C., Spizzichino, D., 2010. Quality Assessment of the Italian Landslide Inventory Using GIS Processing. Landslides, 7(4): 455–470. doi:10.1007/s10346-010-0213-0

    Article  Google Scholar 

  • Tsangaratos, P., Benardos, A., 2014. Estimating Landslide Susceptibility through a Artificial Neural Network Classifier. Natural Hazards, 74(3): 1489–1516. doi:10.1007/s11069-014-1245-x

    Article  Google Scholar 

  • Tsangaratos, P., Ilia, I., 2016. Comparison of a Logistic Regression and Naïve Bayes Classifier in Landslide Susceptibility Assessments: The Influence of Models Complexity and Training Dataset Size. Catena, 145: 164–179. doi:10.1016/j.catena.2016.06.004

    Article  Google Scholar 

  • Turcotte, D. L., Malamud, B. D., 2004. Landslides, Forest Fires, and Earthquakes: Examples of Self-Organized Critical Behavior. Physica A: Statistical Mechanics and Its Applications, 340(4): 580–589. doi:10.1016/j.physa.2004.05.009

    Article  Google Scholar 

  • Wang, Z. Y., Zuo, R. G., Zhang, Z. J., 2015. Spatial Analysis of Fe Deposits in Fujian Province, China: Implications for Mineral Exploration. Journal of Earth Science, 26(6): 813–820. doi:10.1007/s12583-015-0597-9

    Article  Google Scholar 

  • Zhang, G., Chen, L., Yin, K., 2005. Landslide Hazard Zonation of Yongjia County, Zhejiang Province. Hydrogeology & Engineering Geology, (3): 27–31 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, A. X., Wang, R. X., Qiao, J. P., et al., 2014. An Expert Knowledge-Based Approach to Landslide Susceptibility Mapping Using GIS and Fuzzy Logic. Geomorphology, 214: 128–138. doi:10.13039/501100001809

    Article  Google Scholar 

  • Zuo, R. G., 2016. A Nonlinear Controlling Function of Geological Features on Magmatic-Hydrothermal Mineralization. Scientific Reports, 6(1): 27127. doi:10.1038/srep27127

    Article  Google Scholar 

  • Zuo, R. G., Agterberg, F. P., Cheng, Q. M., et al., 2009. Fractal Characterization of the Spatial Distribution of Geological Point Processes. International Journal of Applied Earth Observation and Geoinformation, 11(6): 394–402. doi:10.1016/j.jag.2009.07.001

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers for their valuable comments that helped us improve the manuscript, and Ziye Wang and Yihui Xiong from China University of Geosciences (Wuhan) for preparing parts of the datasets. Renguang Zuo thanks Wang Yang from China University of Geosciences (Wuhan) for providing a part of dataset used in this study. This research benefited from the joint financial support from the National Natural Science Foundation of China (No. 41522206), and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. MSFGPMR03-3). The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0772-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, R., Carranza, E.J.M. A fractal measure of spatial association between landslides and conditioning factors. J. Earth Sci. 28, 588–594 (2017). https://doi.org/10.1007/s12583-017-0772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0772-2

Key words

Navigation