Skip to main content
Log in

Analysis of atmospheric turbidity in clear skies at Wuhan, Central China

  • Hydrogeology and Environmental Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Ångström turbidity coefficient (β) and Linke turbidity factor (T L) are used to study the atmospheric conditions in Wuhan, Central China, using measured direct solar radiation during 2010–2011 in this study. The results show that annual mean β values generally increase from 0.28 in the morning to 0.35 at noon, and then decrease to 0.1 in the late afternoon during the day; annual mean TL generally varies from 3 to 7 in Central China. Both turbidity coefficients have maximum values in spring and summer, while minimum values are observed in winter months. It also reveals that β values show preponderance (52.8%) between 0.15 and 0.35, 78.1% of TL values are between 3.3 and 7.7, which can be compared with other sites around the world. Relationship between turbidity coefficients and main meteorological parameters (humidity, temperature and wind direction) have been further investigated, it is discovered that the local aerosol concentrations, dust events in northern China and Southwest Monsoon from the Indian Ocean influences the β values in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Adamopoulos, A. D., Kambezidis, H. D., Kaskaoutis, D. G., et al., 2007. A Study of Aerosol Particle Sizes in the Atmosphere of Athens, Greece, Retrieved from Solar Spectral Measurements. Atmospheric Research, 86(3/4): 194–206. doi:10.1016/j.atmosres.2007.04.003

    Article  Google Scholar 

  • Ångström, A., 1961. Techniques of Determinig the Turbidity of the Atmosphere. Tellus, 13(2): 214–223. doi:10.3402/tellusa.v13i2.9493

    Article  Google Scholar 

  • Ångström, A., 1964. The Parameters of Atmospheric Turbidity. Tellus, 16(1): 64–75. doi:10.1111/j.2153-3490.1964.tb00144.x

    Article  Google Scholar 

  • Bilbao, J., Román, R., Miguel, A., 2014. Turbidity Coefficients from Normal Direct Solar Irradiance in Central Spain. Atmospheric Research, 143: 73–84. doi:10.1016/j.atmosres.2014.02.007

    Article  Google Scholar 

  • Bird, R. E., Hulstrom, R. L., 1981. A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces. SERI/TR-642-761 Solar Energy Research Institute, Colorado

    Book  Google Scholar 

  • Braslau, N., Dave, J. V., 1973. Effect of Aerosols on the Transfer of Solar Energy through Realistic Model Atmospheres. Part I: Non-Absorbing Aerosols. Journal of Applied Meteorology, 12(4): 601–615. doi:10.1175/1520-0450(1973)012<0601:eoaott>2.0.co;2

    Article  Google Scholar 

  • Chaâbane, M., 2008. Analysis of the Atmospheric Turbidity Levels at Two Tunisian Sites. Atmospheric Research, 87(2): 136–146. doi:10.1016/j.atmosres.2007.08.003

    Article  Google Scholar 

  • Che, H., Zhang, X. Y., Xia, X., et al., 2015. Ground-Based Aerosol Climatology of China: Aerosol Optical Depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmospheric Chemistry and Physics, 15(13): 7619–7652. doi:10.5194/acp-15-7619-2015

    Article  Google Scholar 

  • Djafer, D., Irbah, A., 2013. Estimation of Atmospheric Turbidity over Ghardaïa City. Atmospheric Research, 128: 76–84. doi:10.1016/j.atmosres.2013.03.009

    Article  Google Scholar 

  • Dogniaux, R., 1974. Representation Analytique des Composantes du Rayonnement Solaire. Institut Royal de Métèorologie de Belgique, Série A, No. 83

    Google Scholar 

  • Ellouz, F., Masmoudi, M., Medhioub, K., 2013. Study of the Atmospheric Turbidity over Northern Tunisia. Renewable Energy, 51: 513–517. doi:10.1016/j.renene.2008.04.035

    Article  Google Scholar 

  • El-Metwally, M., 2013. Indirect Determination of Broadband Turbidity Coefficients over Egypt. Meteorology and Atmospheric Physics, 119(1/2): 71–90. doi:10.1007/s00703-012-0223-7

    Article  Google Scholar 

  • Feng, Q., Wu, S. J., Du, Y., et al., 2010. Variations of PM10 Concentrations in Wuhan, China. Environmental Monitoring and Assessment, 176(1/2/3/4): 259–271. doi:10.1007/s10661-010-1581-6

    Google Scholar 

  • Gong, W., Zhang, M., Han, G., et al., 2015. An Investigation of Aerosol Scattering and Absorption Properties in Wuhan, Central China. Atmosphere, 6(4): 503–520. doi:10.3390/atmos6040503

    Article  Google Scholar 

  • Grenier, J. C., De La Casinière, A., Cabot, T., 1995. Atmospheric Turbidity Analyzed by Means of Standardized Linke’s Turbidity Factor. Journal of Applied Meteorology, 34(6): 1449–1458. doi:10.1175/1520-0450(1995)034<1449:atabmo>2.0.co;2

    Article  Google Scholar 

  • Gueymard, C. A., 2005. Importance of Atmospheric Turbidity and Associated Uncertainties in Solar Radiation and Luminous Efficacy Modelling. Energy, 30(9): 1603–1621. doi:10.1016/j.energy.2004.04.040

    Article  Google Scholar 

  • Gueymard, C. A., Garrison, J. D., 1998. Critical Evaluation of Precipitable Water and Atmospheric Turbidity in Canada Using Measured Hourly Solar Irradiance. Solar Energy, 62(4): 291–307. doi:10.1016/s0038-092x(98)00005-x

    Article  Google Scholar 

  • Hu, B., Wang, Y. S., Liu, G. R., 2007. Spatiotemporal Characteristics of Photosynthetically Active Radiation in China. Journal of Geophysical Research, 112(D14): D14106. doi:10.1029/2006jd007965

    Article  Google Scholar 

  • Hussain, M., Khatun, S., Rasul, M. G., 2000. Determination of Atmospheric Turbidity in Bangladesh. Renewable Energy, 20(3): 325–332. doi:10.1016/s0960-1481(99)00102-0

    Article  Google Scholar 

  • Iqbal, M., 1983. An Introduction to Solar Radiation. Academic Press, New York

    Google Scholar 

  • Jacovides, C. P., Kaltsounides, N. A., Asimakopoulos, D. N., et al., 2005. Spectral Aerosol Optical Depth and Angstrom Parameters in the Polluted Athens Atmosphere. Theoretical and Applied Climatology, 81(3/4): 161–167. doi:10.1007/s00704-004-0110-3

    Article  Google Scholar 

  • Janjai, S., Kumharn, W., Laksanaboonsong, J., 2003. Determination of Angstrom’s Turbidity Coefficient over Thailand. Renewable Energy, 28(11): 1685–1700. doi:10.1016/s0960-1481(03)00010-7

    Article  Google Scholar 

  • Kaskaoutis, D. G., Kambezidis, H. D., 2007. Comparison of the Ångström Parameters Retrieval in Different Spectral Ranges with the Use of Different Techniques. Meteorology and Atmospheric Physics, 99(3/4): 233–246. doi:10.1007/s00703-007-0279-y

    Google Scholar 

  • Kasten, F., 1980. A Simple Parameterization of the Pyrheliometric Formula for Determining the Linke Turbidity Factor. Meteor. Rundschau, 33: 124–127

    Google Scholar 

  • Kasten, F., 1996. The Linke Turbidity Factor Based on Improved Values of the Integral Rayleigh Optical Thickness. Solar Energy, 56(3): 239–244. doi:10.1016/0038-092x(95)00114-7

    Article  Google Scholar 

  • Leckner, B., 1978. The Spectral Distribution of Solar Radiation at the Earth’s Surface—Elements of a Model. Solar Energy, 20(2): 143–150. doi:10.1016/0038-092x(78)90187-1

    Article  Google Scholar 

  • Li, D. H. W., Lam, J. C., 2002. A Study of Atmospheric Turbidity for Hong Kong. Renewable Energy, 25(1): 1–13. doi:10.1016/s0960-1481(01)00008-8

    Article  Google Scholar 

  • Li, K. M., Li, Z. Q., Wang, C. Y., et al., 2016. Shrinkage of Mt. Bogda Glaciers of Eastern Tian Shan in Central Asia during 1962–2006. Journal of Earth Science, 27(1): 139–150. doi:10.1007/s12583-016-0614-7

    Article  Google Scholar 

  • Lin, A. W., Zou, L., Wang, L., et al., 2016. Estimation of Atmospheric Turbidity Coefficient over Zhengzhou during 1961–2013. Renewable Energy, 86: 1134–1144

    Article  Google Scholar 

  • Linke, F., 1922. Transmissions Koeffizient und Trubungsfaktor. Beitraége Zur Physik der Atmosphaére, 10: 91–103

    Google Scholar 

  • Long, C. N., Ackerman, T. P., 2000. Identification of Clear Skies from Broadband Pyranometer Measurements and Calculation of Downwelling Shortwave Cloud Effects. Journal of Geophysical Research: Atmospheres, 105(D12): 15609–15626. doi:10.1029/2000jd900077

    Article  Google Scholar 

  • López, G., Batlles, F. J., 2004. Estimate of the Atmospheric Turbidity from Three Broad-Band Solar Radiation Algorithms: A Comparative Study. Annales Geophysicae, 22(8): 2657–2668. doi:10.5194/angeo-22-2657-2004

    Article  Google Scholar 

  • Louche, A., Maurel, M., Simonnot, G., et al., 1987. Determination of Ångström’s Turbidity Coefficient from Direct Total Solar Irradiance Measurements. Solar Energy, 38(2): 89–96. doi:10.1016/0038-092x(87)90031-4

    Article  Google Scholar 

  • Malik, A. Q., 2000. A Modified Method of Estimating Ångström’s Turbidity Coefficient for Solar Radiation Models. Renewable Energy, 21(3/4): 537–552. doi:10.1016/s0960-1481(00)00080-x

    Article  Google Scholar 

  • Mavromatakis, F., Franghiadakis, Y., 2007. Direct and Indirect Determination of the Linke Turbidity Coefficient. Solar Energy, 81(7): 896–903. doi:10.1016/j.solener.2006.11.010

    Article  Google Scholar 

  • Pan, Z. T., Zhang, Y. J., Liu, X. D., et al., 2016. Current and Future Precipitation Extremes over Mississippi and Yangtze River Basins as Simulated in CMIP5 Models. Journal of Earth Science, 27(1): 22–36. doi:10.1007/s12583-016-0627-2

    Article  Google Scholar 

  • Pedrós, R., Utrillas, M. P., Martínez-Lozano, J. A., et al., 1999. Values of Broad Band Turbidity Coefficients in a Mediterranean Coastal Site. Solar Energy, 66(1): 11–20. doi:10.1016/s0038-092x(99)00015-8

    Article  Google Scholar 

  • Power, H. C., 2001. Estimating Atmospheric Turbidity from Climate Data. Atmospheric Environment, 35(1): 125–134

    Article  Google Scholar 

  • Salazar, G. A., 2011. Estimation of Monthly Values of Atmospheric Turbidity Using Measured Values of Global Irradiation and Estimated Values from CSR and Yang Hybrid Models. Study Case: Argentina. Atmospheric Environment, 45(15): 2465–2472. doi:10.1016/j.atmosenv.2011.02.048

    Article  Google Scholar 

  • Salazar, G., Utrillas, P., Esteve, A., et al., 2013. Estimation of Daily Average Values of the Ångström Turbidity Coefficient β Using a Corrected Yang Hybrid Model. Renewable Energy, 51: 182–188

    Article  Google Scholar 

  • Sapkota, B., Dhaubhadel, R., 2002. Atmospheric Turbidity over Kathmandu Valley. Atmospheric Environment, 36(8): 1249–1257. doi:10.1016/s1352-2310(01)00582-9

    Article  Google Scholar 

  • Trabelsi, A., Masmoudi, M., 2011. An Investigation of Atmospheric Turbidity over Kerkennah Island in Tunisia. Atmospheric Research, 101(1/2): 22–30. doi:10.1016/j.atmosres.2011.03.009

    Article  Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., Kiehl, J., 2009. Earth’s Global Energy Budget. Bulletin of the American Meteorological Society, 90(3): 311–323. doi:10.1175/2008bams2634.1

    Article  Google Scholar 

  • Wang, L. C., Gong, W., Li, C., et al., 2013. Measurement and Estimation of Photosynthetically Active Radiation from 1961 to 2011 in Central China. Applied Energy, 111: 1010–1017. doi:10.1016/j.apenergy.2013.07.001

    Article  Google Scholar 

  • Wang, L. C., Gong, W., Ma, Y. Y., et al., 2014a. Photosynthetically Active Radiation and Its Relationship with Global Solar Radiation in Central China. International Journal of Biometeorology, 58(6): 1265–1277. doi:10.1007/s00484-013-0690-7

    Article  Google Scholar 

  • Wang, L. C., Gong, W., Li, J., et al., 2014b. Empirical Studies of Cloud Effects on Ultraviolet Radiation in Central China. International Journal of Climatology, 34(7): 2218–2228. doi:10.1002/joc.3832

    Article  Google Scholar 

  • Wang, L. C., Gong, W., Xia, X. G., et al., 2015a. Long-Term Observations of Aerosol Optical Properties at Wuhan, an Urban Site in Central China. Atmospheric Environment, 101: 94–102. doi:10.13039/501100001809

    Article  Google Scholar 

  • Wang, L. C., Gong, W., Ramesh, P., et al., 2015b. Aerosol Optical Properties over Mount Song, a Rural Site in Central China. Aerosol and Air Quality Research, 15: 2051–2064. doi:10.4209/aaqr.2014.12.0335

    Google Scholar 

  • Wang, L. C., Salazar, G. A., Gong, W., et al., 2015c. An Improved Method for Estimating the Ångström Turbidity Coefficient β in Central China during 1961–2010. Energy, 81: 67–73. doi:10.13039/501100001809

    Article  Google Scholar 

  • Wang, L. C., Kisi, O., Zounemat-Kermani, M., et al., 2016. Solar Radiation Prediction Using Different Techniques: Model Evaluation and Comparison. Renewable and Sustainable Energy Reviews, 61: 384–397. doi:10.1016/j.rser.2016.04.024

    Article  Google Scholar 

  • Wang, Y. Q., Zhang, X. Y., Sun, J. Y., et al., 2015. Spatial and Temporal Variations of the Concentrations of PM10, PM2.5 and PM1 in China. Atmospheric Chemistry and Physics Discussions, 15(11): 15319–15354. doi:10.13039/501100004751

    Article  Google Scholar 

  • Wen, C. C., Yeh, H. H., 2009. Analysis of Atmospheric Turbidity Levels at Taichung Harbor near the Taiwan Strait. Atmospheric Research, 94(2): 168–177. doi:10.1016/j.atmosres.2009.05.010

    Article  Google Scholar 

  • Wild, M., Gilgen, H., Roesch, A., et al., 2005. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science, 308(5723): 847–850. doi:10.1126/science.1103215

    Article  Google Scholar 

  • Xia, X. A., Chen, H. B., Wang, P. C., et al., 2006. Variation of Column-Integrated Aerosol Properties in a Chinese Urban Region. Journal of Geophysical Research, 111(D5): D05204. doi:10.1029/2005jd006203

    Article  Google Scholar 

  • Xia, X. G., Li, Z. Q., Holben, B., et al., 2007. Aerosol Optical Properties and Radiative Effects in the Yangtze Delta Region of China. Journal of Geophysical Research, 112(D22): D22S12. doi:10.1029/2007jd008859

    Google Scholar 

  • Yu, X. N., Zhu, B., Zhang, M. G., 2009. Seasonal Variability of Aerosol Optical Properties over Beijing. Atmospheric Environment, 43(26): 4095–4101. doi:10.1016/j.atmosenv.2009.03.061

    Article  Google Scholar 

  • Zakey, A., Abdelwahab, M., Makar, P. A., 2004. Atmospheric Turbidity over Egypt. Atmospheric Environment, 38(11): 1579–1591

    Article  Google Scholar 

  • Zhuang, B. L., Wang, T. J., Li, S., et al., 2014. Optical Properties and Radiative Forcing of Urban Aerosols in Nanjing, China. Atmospheric Environment, 83: 43–52. doi:10.13039/501100001809

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 41601044), the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences, Wuhan (Nos. CUG150631, 009-162301124611), and the 111 Project (No. B08030). The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0756-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lunche Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, Y., Niu, Y. et al. Analysis of atmospheric turbidity in clear skies at Wuhan, Central China. J. Earth Sci. 28, 729–738 (2017). https://doi.org/10.1007/s12583-017-0756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0756-2

Key words

Navigation