Skip to main content
Log in

Evaluation of slip rate on Astara fault system, North Iran

  • Special Column on Tectonics of Turkey and Iran and Comparison with Other Tethyan Domains
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Due to its strategic location, the Astara fault system (AFS), which is located in Iran, has given rise to a number of earthquakes. In spite of its frequent seismic events, limited information is available for AFS. Slip rate is one of the important variables for future scrutiny of seismic risk of this fault system. The main objective of this research is to study slip rates at intermediate and short terms for this fault system using geological, geodetic observations and empirical method. Using the geological data, the intermediate-term horizontal and vertical slip rates for AFS have been determined to be 2.8±0.2 and 0.27±0.03 mm/year, respectively. In addition, the short-term slip rates of the fault, based on the geodetic method (using displacement values of two GPS stations: HASH and DAMO) and assuming attenuation of 60% (to fold the sediment of South Caspian Basin and shortening of Talesh Mountain range), determined to be 1.23±0.03 and 2.05±0.05 mm/year for the horizontal and vertical slips, respectively. Finally, evaluation of the slip rate using empirical relationship yields 10 mm/year for the entire fault system, which seems rather implausible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M. B., Vincent, S. J., Alsop, G. I., et al., 2003. Late Cenozoic Deformation in the South Caspian Region: Effects of a Rigid Basement Block within a Collision Zone. Tectonophysics, 366(3–4): 223–239. doi:10.1016/s0040-1951(03)00098-2

    Article  Google Scholar 

  • Ambraseys, N. N., Jackson, J. A., 1998. Faulting Associated with Historical and Recent Earthquakes in the Eastern Mediterranean Region. Geophysical Journal International, 133(2): 390–406. doi:10.1046/j.1365-246x.1998.00508.x

    Article  Google Scholar 

  • Ambraseys, N. N., Melville, C. P., 1982. A History of Persian Earthquakes. Cambridge University Press, London. 219

    Google Scholar 

  • Ashtari, M., Hatzfeld, D., Kamalian, N., 2005. Microseismicity in the Region of Tehran. Tectonophysics, 395(3–4): 193–208. doi:10.1016/j.tecto.2004.09.011

    Article  Google Scholar 

  • Berberian, M., 1983. The Southern Caspian: A Compressional Depression Floored by a Trapped, Modified Oceanic Crust. Canadian Journal of Earth Sciences, 20(2): 163–183. doi:10.1139/e83-015

    Article  Google Scholar 

  • Berberian, M., Yeats, R. S., 1999, Patterns of Historical Earthquake Rupture in the Iranian Plateau. Bulletin of the Siesmological Society of America, 89: 120–139

    Google Scholar 

  • Brunet, M. F., Korotaev, M. V., Ershov, A. V., et al., 2003. The South Caspian Basin: A Review of Its Evolution from Subsidence Modelling. Sedimentary Geology, 156(1–4): 119–148. doi:10.1016/s0037-0738(02)00285-3

    Article  Google Scholar 

  • Campos, J., Madariaga, R., Nábelek, J., et al., 1994. Faulting Process of the 1990 June 20 Iran Earthquake from Broadband Records. Geophysical Journal International, 118(1): 31–46. doi:10.1111/j.1365-246x.1994.tb04673.x

    Article  Google Scholar 

  • Djamour, Y., Vernant, P., Nankali, H. R., et al., 2010. NW Iran-Eastern Turkey Present-Day Kinematics: Results from the Iranian Permanent GPS Network. Earth and Planetary Science Letters, 307(1–2): 27–34. doi:10.1016/j.epsl.2011.04.029

    Google Scholar 

  • Engdahl, E. R., Jackson, J. A., Myers, S. C., et al., 2006. Relocation and Assessment of Seismicity in the Iran Region. Geophysical Journal International, 167(2): 761–778. doi:10.1111/j.1365-246x.2006.03127.x

    Article  Google Scholar 

  • Foroutan, M., 2008, Paleoseismology and Morphotectonics of Dehshir Fault: [Dissertation]. Geological Survey of Iran Research Institute for Earth Sciences, Iran

    Google Scholar 

  • Gardner, J. K., Knopoff, L., 1974. Is the Sequence of Earthquakes in Southern California with Aftershocks Removed, Poissonian. Bulletin of the Siesmological Society of America, 64: 1363–1367

    Google Scholar 

  • Gutenberg, B., Richter, C. F., 1944. Frequency of Earthquakes in California. Bulletin of the Siesmological Society of America, 34: 185–188

    Google Scholar 

  • Hanks, T. C., Kanamori, H., 1979. A Moment Magnitude Scale. Journal of Geophysical Research, 84(B5): 2348. doi:10.1029/jb084ib05p02348

    Article  Google Scholar 

  • Heaton, T. H., Tajima, F., Mori, A. W., 1986. Estimating Ground Motions Using Recorded Accelerograms. Surveys in Geophysics, 8(1): 25–83. doi:10.1007/bf01904051

    Article  Google Scholar 

  • International Commission on Large Dams (ICOLD., 1998. Neotectonics and Dams. Bulletin International, 148: 214–245

    Google Scholar 

  • Iranian code of practice for seismic resistant design of buildings, standard No. 280., 2015. Permanent Committee for Revising the Iranian Code of Practice for Seismic Resistant Design of Buildings, Teheran

    Google Scholar 

  • Jackson, J., Priestley, K., Allen, M., et al., 2002. Active Tectonics of the South Caspian Basin. Geophysical Journal International, 148(2): 214–245. doi:10.1046/j.1365-246x.2002.01588.x

    Google Scholar 

  • Kaveh, A., Nazari, H., Ghorashi, M., et al., 2013. Morphotectonic Map of the Talesh Mountains. Geological Survey of Iran, Tehran

    Google Scholar 

  • Kaz’min, V. G., Verzhbitskii, E. V., 2011. Age and Origin of the South Caspian Basin. Oceanology, 51(1): 131–140. doi:10.1134/s0001437011010073

    Article  Google Scholar 

  • Keilis-Borok, V. I., Knopoff, L., Rotvain, I. M., 1980. Bursts of Aftershocks, Long-Term Precursors of Strong Earthquakes. Nature, 283(5744): 259–263. doi:10.1038/283259a0

    Article  Google Scholar 

  • Khodabanede, A. A., Soltani, G. A., Babakhani, A. R., 1997. Geological Map of Astara. Geological Survey and Mineral Exploration of Iran, Tehran

    Google Scholar 

  • Nazari, H., Shahidi, A., 2011. Seismotectonic of Iran (Alborz). Geological Survey of Iran, Tehran. 97

    Google Scholar 

  • Nowroozi, A. A., 1985. Empirical Relations between Magnitude and Fault Parameter for Earthquakes in Iran. Bulletin of the Seismological Society of America, 75(5): 1327–1338

    Google Scholar 

  • Reid, H. F., 1910. The Mechanics of the Earthquake, the California Earthquake of April 18, 1906, Report of the Satate Investigation Commission. Carnegie Institution of Washington, Washington, D.C.. Vol. 2

    Google Scholar 

  • Reilinger, R., McClusky, S., Vernant, P., et al., 2006. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research: Solid Earth, 111(B5): B05411. doi:10.1029/2005jb004051

    Article  Google Scholar 

  • Slemmons, D. B., 1982. Determination of Design Earthquake Magnitude for Microzonation, Proc. of the Third Int. Earthquake Microzonation Conference, Vol. 1. U.S. National Science Foundation, Washington, D.C.. 119–130

    Google Scholar 

  • Stirling, M, W., Wesnousky, S. G., 1997. Do Historical Rates of Seismicity in Southern California Require the Occurrence of Earthquake Magnitude Greater than would be Predicted from Fault Length? Bulletin of the Seismological Society of America, 87: 1662–1666

    Google Scholar 

  • Tatar, M., Hatzfeld, D., 2009. Microseismic Evidence of Slip Partitioning for the Rudbar-Tarom Earthquake (Ms 7.7) of 1990 June 20 in NW Iran. Geophysical Journal International, 176(2): 529–541. doi:10.1111/j.1365-246x.2008.03976.x

    Article  Google Scholar 

  • Tatar, M., Jackson, J., Hatzfeld, D., et al., 2007. The 2004 May 28 Baladeh Earthquake (Mw 6.2) in the Alborz, Iran: Overthrusting the South Caspian Basin Margin, Partitioning of Oblique Convergence and the Seismic Hazard of Tehran. Geophysical Journal International, 170(1): 249–261. doi:10.1111/j.1365-246x.2007.03386.x

    Article  Google Scholar 

  • Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin Seismological Society of America, 84: 974–1002

    Google Scholar 

  • Wesnousky, S. G., 1997, The Gutenberg-Richter or Characteristic Earthquake Distribution, Which is It? Bulletin of the Seismological Society of America, 84: 1940–1959

    Google Scholar 

  • Yousefi, E., Friedberg, J. L., 1978. Aeromagnetic Map of Iran Quadrangle No. P4. Scale: 1: 250 000. Geological Survey of Iran, Tehran. [2016-09-30]. http://www.iiees.ac.ir; http://www.isc.ac.uk/; http://www.usgs.gov/

    Google Scholar 

  • Zanjani, A. A., Ghods, A., Sobouti, F., et al., 2013. Seismicity in the Western Coast of the South Caspian Basin and the Talesh Mountains. Geophysical Journal International, 195(2): 799–814. doi:10.1093/gji/ggt299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Barzegari.

Electronic supplementary material

Estimation of maximum magnitude of Astara fault system

12583_2016_680_MOESM2_ESM.xlsx

The slip rate values for each branches of AFS based on Stirling and Wesnousky (1997) empirical equation. In this table, L is length of segments, Dips refer to dip of segment obtained from Kaveh et al. (2013), W is fault width, Mw is moment magnitude and T is the return period based on G-R equation, μ is constant coefficient and Ug is the slip rate cm/year.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegari, A., Esmaeili, R., Ebrahimi, M. et al. Evaluation of slip rate on Astara fault system, North Iran. J. Earth Sci. 27, 971–980 (2016). https://doi.org/10.1007/s12583-016-0680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-016-0680-x

Key words

Navigation