Skip to main content
Log in

Geological evolution and huge ore-forming belts in the core part of the Central Asian metallogenic region

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The multi-stage geological evolution and extensive continental deformations during the course of its history make the Central Asian metallogenic region (CAMR) a unique and complicated large-scale metal domain. New geological observations and precise age-data allow an improved reconstruction of the geological evolution of the CAMR. This paper summarizes the Paleozoic orogenic evolution and related ore formation in the core part of the CAMR based on the geological data published both during the Soviet period and the last decades. Four ore-formation provinces (Altay, Balkhash-Junggar, Chu-Yili-Tianshan, and Southwest Tianshan) could be classified. The Balkhash-Junggar and Chu-Yili-Tianshan provinces are the major topics of this paper. The Balkhash-Junggar province consists of 4 huge ore-forming belts (Zharma-Saur, Tarbahtay-Xiemistay, Aktogay-Baerluke, Balkhashwestern Junggar) with 11 large ore-college areas. The Chu-Yili-Tianshan province consists of 4 huge ore-forming belts (Alatau-Sairimu, Chu-Yili-Bolehuole, Issyk-Awulale, Kazharman-Nalaty) with 22 large ore-college areas. Formation of large ore-college area corresponds to a specific stage of continental crust growth. Comparison of geology and ore deposits in the CAMR provides rich information for future exploration and understanding of ore-forming processes. The Paleo-Junggar Ocean closed at Early Devonian in the Balkhash-western Junggar ore-forming belt. Afterwards, widespread volcanicsedimentary rocks formed at extensional stage due to delamination of the thick lower crust formed during previous accretionary processes. Felsic magma intrusion caused formation of porphyry Cu-Au deposit at ∼310 Ma and related hydrothermal gold deposits about 10 Ma later. For example, in the Hatu-Baobei-Sartohay Au-Cr ore-college area in the Balkhash-western Junggar ore-forming belt, small granitic to diorite plutons and various dykes (312–277 Ma) and large granite bodies (∼300 Ma) intruded into the Devonian to Early Carboniferous volcano-sedimentary basin. These magmatic activities and fault systems mainly controlled ore-forming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abdulin, A. A., 1989. Geology and Metallogeny of Kazakhstan. Nauka Publishing House, Moscow. 343 (in Russian)

    Google Scholar 

  • Alexeiev, D. V., Biske, Y. S., Wang, B., et al., 2015. Tectono-Stratigraphic Framework and Palaeozoic Evolution of the Chinese South Tianshan. Geotectonics, 49: 93–122. doi:10.1134/s0016852115020028

    Article  Google Scholar 

  • Alexeiev, D. V., Cook, H. E., Buvtyshkin, V. M., et al., 2009. Structural Evolution of the Ural-Tian Shan Junction: A View from Karatau Ridge, South Kazakhstan. Comptes Rendus Geoscience, Comptes Rendus Geoscience, 341: 287–297. doi:10.1016/j.crte.2008.12.004

    Article  Google Scholar 

  • Alexeiev, D. V., Ryazantsev, A. V., Kröner, A., et al., 2011. Geochemical Data and Zircon Ages for Rocks in a High-Pressure Belt of Chu-Yili Mountains, Southern Kazakhstan: Implications for the Earliest Stages of Accretion in Kazakhstan and the Tianshan. Journal of Asian Earth Sciences, 42: 805–820. doi:10.1016/j.jseaes.2010.09.004

    Article  Google Scholar 

  • An, F., Wang, J. L., Zhu, Y. F., et al., 2015. Mineralogy and Geochemistry of Intrusions Related to Sayak Large Copper Deposit, Kazakhstan, Central Asian Metallogenic Belt: Magma Nature and Its Significance to Mineralization. Acta Petrologica Sinica, 31(2): 555–570 (in Chinese with English Abstract)

    Google Scholar 

  • An, F., Zhu, Y. F., 2008. Study on Trace Elements Geochemistry and SHRIMP Chronology of Volcanic Rocks in Tulasu Basin, Northwest Tianshan. Acta Petrologica Sinica, 24: 2741–2748 (in Chinese with English Abstract)

    Google Scholar 

  • An, F., Zhu, Y. F., Wei, S. N., et al., 2013. An Early Devonian to Early Carboniferous Volcanic Arc in North Tianshan, NW China: Geochronological and Geochemical Evidence from Volcanic Rocks. Journal of Asian Earth Sciences, 78: 100–113. doi:10.1016/j.jseaes.2013.07.037

    Article  Google Scholar 

  • Avdeev, A. V., Kovalev, A. A., 1989. Ophiolites and Evolution of the Southwestern Part of the Ural-Mongolia Folded Belt. Moscow University Publishing, Moscow. 227 (in Russian)

    Google Scholar 

  • Bierlein, F. P., Wilde, A. R., 2010. New Constraints on the Polychronous Nature of the Giant Muruntau Gold Deposit from Wall-Rock Alteration and Ore Paragenetic Studies. Australian Journal of Earth Sciences, 57: 839–854. doi:10.1080/08120099.2010.495705

    Article  Google Scholar 

  • Biske, Y. S., Konopelko, D. L., Seltmann, R., 2013. Geodynamics of Late Paleozoic Magmatism in the Tien Shan and Its Framework. Geotectonics, 47: 291–309. doi:10.1134/s001685211304002x

    Article  Google Scholar 

  • Buckman, S., Aitchison, J. C., 2001. Middle Ordovician (Llandeilan) Radiolarians from West Junggar, Xinjiang, China. Micropaleontology, 47: 359–367. doi:10.2113/47.4.359

    Article  Google Scholar 

  • Cao, M. J., Qin, K. Z., Li, G. M., et al., 2015. In Situ LA-(MC)-ICP-MS Trace Element and Nd Isotopic Compositions and Genesis of Polygenetic Titanite from the Baogutu Reduced Porphyry Cu Deposit, Western Junggar, NW China. Ore Geology Reviews, 65: 940–954. doi:10.1016/j.oregeorev.2014.07.014

    Article  Google Scholar 

  • Charvet, J., Shu, L. S., Laurent-Charvet, S., 2007. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30: 162–186

    Google Scholar 

  • Chen, X. H., Qu, W. J., Han, S. Q., et al., 2010. Re-Os Geochronology of Cu and W-Mo Deposits in the Balkhash Metallogenic Belt, Kazakhstan and Its Geological Significance. Geoscience Frontiers, 1(1): 115–124. doi:10.1016/j.gsf.2010.08.006

    Article  Google Scholar 

  • Chen, X. H., Seitmuratova, E., Wang, Z. H., et al., 2014. SHRIMP U-Pb and Ar-Ar Geochronology of Major Porphyry and Skarn Cu Deposits in the Balkhash Metallogenic Belt, Central Asia, and Geological Implications. Journal of Asian Earth Sciences, 79: 723–740. doi:10.1016/j.jseaes.2013.06.011

    Article  Google Scholar 

  • Chen, X. H., Wang, Z. H., Chen, Z. L., et al., 2015. SHRIMP U-Pb, Ar-Ar and Fission-Track Geochronology of W-Mo Deposits in the Balkhash Metallogenic Belt (Kazakhstan), Central Asia, and the Geological Implications. Journal of Asian Earth Sciences, 110: 19–32. doi:10.1016/j.jseaes.2014.07.016

    Article  Google Scholar 

  • Chen, Y. F., Wang, Y. W., Wang, J. B., et al., 2013. Zircon U-Pb Age, Geochemistry and Geological Implication of the 255 Ma Alkali-Rich Dykes from Ulungur Area, North Xinjiang. Journal of Earth Science, 24(4): 519–528. doi:10.1007/s12583-013-0346-x

    Article  Google Scholar 

  • Chen, Y. J., Pirajno, F., Wu, G., et al., 2012. Epithermal Deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101: 889–917. doi:10.1007/s00531-011-0689-4

    Article  Google Scholar 

  • Cole, A., Wilkinson, J. J., Halls, C., et al., 2000. Geological Characteristics, Tectonic Setting and Preliminary Interpretations of the Jilau Gold-Quartz Vein Deposit, Tajikistan. Mineralium Deposita, 35(7): 600–618. doi:10.1007/s001260050266

    Article  Google Scholar 

  • De Grave, J. D., Glorie, S., Buslov, M. M., et al., 2012. Thermo-Tectonic History of the Issyk-Kul Basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Research, 23(3): 998–1020. doi:10.1016/j.gr.2012.06.014

    Article  Google Scholar 

  • De Grave, J., Glorie, S., Ryabinin, A., et al., 2011. Late Palaeozoic and Meso-Cenozoic Tectonic Evolution of the Southern Kyrgyz Tien Shan: Constraints from Multi-Method Thermochronology in the Trans-Alai, Turkestan-Alai Segment and the Southeastern Ferghana Basin. Journal of Asian Earth Sciences, 44: 149–168. doi:10.1016/j.jseaes.2011.04.019

    Article  Google Scholar 

  • De Jong, K. D., Wang, B., Faure, M., et al., 2009. New 40Ar/39Ar Age Constraints on the Late Palaeozoic Tectonic Evolution of the Western Tianshan (Xinjiang, Northwestern China), with Emphasis on Permian Fluid Ingress. International Journal of Earth Sciences, 98: 1239–1258. doi:10.1007/s00531-008-0338-8

    Article  Google Scholar 

  • Deng, Y. F., Song, X. Y., Hollings, P., et al., 2015. Role of Asthenosphere and Lithosphere in the Genesis of the Early Permian Huangshan Mafic-Ultramafic Intrusion in the Northern Tianshan, NW China. Lithos, 227: 241–254. doi:10.1016/j.lithos.2015.04.014

    Article  Google Scholar 

  • Dobretsov, N. L., Buslov, M. M., Vernikovsky, V. A., 2003. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-Up of Rodinia. Gondwana Research, 6: 143–159. doi:10.1016/s1342-937x(05)70966-7

    Article  Google Scholar 

  • Dobretsov, N. L., Buslov, M. M., Zhimulev, F. I., 2005. Cambrian–Ordovician Tectonics and Geodynamics of the Kokchetau Metamorphic Belt, Northern Kazakhstan. Russian Geology and Geophysics, 46: 785–795

    Google Scholar 

  • Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2013. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China. Economic Geology, 108(8): 1833–1848. doi:10.2113/econgeo.108.8.1833

    Article  Google Scholar 

  • Gao, R., Xiao, L., Pirajno, F., et al., 2014. Carboniferous–Permian Extensive Magmatism in the West Junggar, Xinjiang, Northwestern China: Its Geochemistry, Geochronology, and Petrogenesis. Lithos, 204: 125–143. doi:10.1016/j.lithos.2014.05.028

    Article  Google Scholar 

  • Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2015. Synchronous Crustal Growth and Reworking Recorded in Late Paleoproterozoic Granitoids in the Northern Tarim Craton: In Situ Zircon U-Pb-Hf-O Isotopic and Geochemical Constraints and Tectonic Implications. Geological Society of America Bulletin, 127: 781–803. doi:10.1130/b31050.1

    Article  Google Scholar 

  • Glorie, S., De Grave, J., Buslov, M. M., et al., 2010. Multi-Method Chronometric Constraints on the Evolution of the Northern Kyrgyz Tien Shan Granitoids (Central Asian Orogenic Belt): From Emplacement to Exhumation. Journal of Asian Earth Sciences, 38(3/4):131–146. doi:10.1016/j.jseaes.2009.12.009

    Article  Google Scholar 

  • Gou, L. L., Zhang, L. F., Tao, R. B., et al., 2012. A Geochemical Study of Syn-Subduction and Post-Collisional Granitoids at Muzhaerte River in the Southwest Tianshan UHP Belt, NW China. Lithos, 136–139: 201–224. doi:10.1016/j.lithos.2011.10.005

    Article  Google Scholar 

  • Graupner, T., Niedermann, S., Rhede, D., et al., 2010. Multiple Sources for Mineralizing Fluids in the Charmitan Gold (-Tungsten) Mineralization (Uzbekistan). Mineralium Deposita, 45(7): 667–682. doi:10.1007/s00126-010-0299-2

    Article  Google Scholar 

  • Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3/4): 74–93. doi:10.1016/j.earscirev.2011.09.001

    Article  Google Scholar 

  • Han, B. F., Ji, J. Q., Song, B., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22: 1077–1086 (in Chinese with English Abstract)

    Google Scholar 

  • Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3/4): 135–159. doi:10.1016/s0009-2541(97)00003-x

    Article  Google Scholar 

  • He, G. Q., Liu, J. B., Zhang, Y. Q., et al., 2007. Karamay Ophioliic Mélange Formed during Early Paleozoic in Western Junggar Basin. Acta Petrologica Sinica, 23: 1573–1576 (in Chinese with English Abstract)

    Google Scholar 

  • He, G. Q., Zhu, Y. F., 2006. Comparative Study of the Geology and Mineral Resources in Xinjiang, China, and Its Adjacent Regions. Geology in China, 33: 451–460 (in Chinese with English Abstract)

    Google Scholar 

  • Hegner, E., Klemd, R., Kröner, A., et al., 2010. Mineral Ages and P-T Conditions of Late Paleozoic High-Pressure Eclogite and Provenance of Melange Sediments from Atbashi in the South Tianshan Orogen of Kyrgyzstan. American Journal of Science, 310(9): 916–950. doi:10.2475/09.2010.07

    Article  Google Scholar 

  • Heinhorst, J., Lehmann, B., Ermolov, P., et al., 2000. Paleozoic Crustal Growth and Metallogeny of Central Asia: Evidence from Magmatic-Hydrothermal Ore Systems of Central Kazakhstan. Tectonophysics, 328(1/2): 69–87. doi:10.1016/s0040-1951(00)00178-5

    Article  Google Scholar 

  • Jenchuraeva, R. J., 1997. Tectonic Settings of Porphyry-Type Mineralization and Hydrothermal Alteration in Paleozoic Island Arcs and Active Continental Margins, Kyrghyz Range, (Tien Shan) Kyrghyzstan. Mineralium Deposita, 32(5): 434–440. doi:10.1007/s001260050111

    Article  Google Scholar 

  • Kemkin, I. V., Kemkina, R. A., 2015. Depositional Environment of Cherts of the Sikhote-Alin Region (Russia Far East): Evidence from Major, Trace and Rare Earth Elements Geochemistry. Journal of Earth Science, 26(2): 259–272. doi:10.1007/s12583-015-0531-1

    Article  Google Scholar 

  • Konopelko, D., Biske, G., Seltmann, R., et al., 2008. Deciphering Caledonian Events: Timing and Geochemistry of the Caledonian Magmatic Arc in the Kyrgyz Tien Shan. Journal of Asian Earth Sciences, 32: 131–141. doi:10.1016/j.jseaes.2007.10.017

    Article  Google Scholar 

  • Korsakov, A. V., Shatsky, V. S., Sobolev, N. V., 1998. The First Finding of Coesite in Eclogites of the Kokchetav Massif. Dokl Akad Nauk, 360: 77–81 (in Russian)

    Google Scholar 

  • Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., et al., 2004. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt: Geological and Isotopic Evidence. Journal of Asian Earth Sciences, 23: 605–627. doi:10.1016/s1367-9120(03)00130-5

    Article  Google Scholar 

  • Kröner, A., Alexeiev, D. V., Hegner, E., et al., 2012. Zircon and Muscovite Ages, Geochemistry, and Nd-Hf Isotopes for the Aktyuz Metamorphic Terrane: Evidence for an Early Ordovician Collisional Belt in the Northern Tianshan of Kyrgyzstan. Gondwana Research, 21: 901–927. doi:10.1016/j.gr.2011.05.010

    Article  Google Scholar 

  • Kröner, A., Alexeiev, D. V., Rojas-Agramonte, Y., et al., 2013. Mesoproterozoic (Grenville-Age) Terranes in the Kyrgyz North Tianshan: Zircon Ages and Nd-Hf Isotopic Constraints on the Origin and Evolution of Basement Blocks in the Southern Central Asian Orogen. Gondwana Research, 23: 272–295. doi:10.1016/j.gr.2012.05.004

    Article  Google Scholar 

  • Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25: 103–125. doi:10.1016/j.gr.2012.12.023

    Article  Google Scholar 

  • Kurchavov, A. M., Grankin, M. S., Malchenko, E. G., 2002. Metallogenic Zonality of the Devonian Volcano-Plutonic Belt in Central Kazakhstan. Geology of Ore Deposits, 44: 22–30 (in Russian)

    Google Scholar 

  • Levashova, N. M., van der Voo, R. V. D., Abrajevitch, A. V., et al., 2009. Paleomagnetism of Mid-Paleozoic Subduction-Related Volcanics from the Chingiz Range in NE Kazakhstan: The Evolving Paleogeography of the Amalgamating Eurasian Composite Continent. Geological Society of America Bulletin, 121: 555–573. doi:10.1130/b26354.1

    Article  Google Scholar 

  • Li, G. M., Cao, M. J., Qin, K. Z., et al., 2014. Thermal-Tectonic History of the Baogutu Porphyry Cu Deposit, West Junggar as Constrained from Zircon U-Pb, Biotite Ar/Ar and Zircon/apatite (U-Th)/He Dating. Journal of Asian Earth Sciences, 79: 741–758. doi:10.1016/j.jseaes.2013.05.026

    Article  Google Scholar 

  • Li, H. M., Ding, J. H., Zhang, Z. C., et al., 2015. Iron-Rich Fragments in the Yamansu Iron Deposit, Xinjiang, NW China: Constraints on Metallogenesis. Journal of Asian Earth Sciences, 113:1068–1081. doi:10.1016/j.jseaes.2015.06.026

    Article  Google Scholar 

  • Li, N. B., Niu, H. C., Zhang, X. C., et al., 2015. Age, Petrogenesis and Tectonic Significance of the Ferrobasalts in the Chagangnuoer Iron Deposit, Western Tianshan. International Geology Review, 57(9/10): 1218–1238. doi:10.1080/00206814.2015.1004136

    Article  Google Scholar 

  • Li, X. F., Wang, G., Mao, W., et al., 2015. Fluid Inclusions, Muscovite Ar-Ar Age, and Fluorite Trace Elements at the Baiyanghe Volcanic Be-U-Mo Deposit, Xinjiang, Northwest China: Implication for Its Genesis. Ore Geology Reviews, 64: 387–399. doi:10.1016/j.oregeorev.2014.07.017

    Article  Google Scholar 

  • Lin, C. S., Li, H., Liu, J. Y., 2012. Major Unconformities, Tectonostratigraphic Frameword, and Evolution of the Superimposed Tarim Basin, Northwest China. Journal of Earth Science, 23(4): 395–407. doi:10.1007/s12583-012-0263-4

    Article  Google Scholar 

  • Liu, L., Zhou, J., Yin, F., et al., 2014. The Reconnaissance of Mineral Resources through Aster Data-Based Image Processing, Interpreting and Ground Inspection in the Jiafushaersu Area, West Junggar, China. Journal of Earth Science, 25(2): 397–406. doi:10.1007/s12583-014-0423-9

    Article  Google Scholar 

  • Liu, X. J., Liu, W., 2013. Re-Os Dating of the Suoerkuduke Cu (Mo) Deposit, Fuyun County, Xinjiang, and Its Geodynamic Implications. Journal of Earth Science, 24(2): 188–202. doi:10.1007/s12583-013-0322-5

    Article  Google Scholar 

  • Liu, Y. G., Lü, X. B., Wu, C. M., et al., 2016. The Migration of Tarim Plume Magma Toward the Northeast in Early Permian and Its Significance for the Exploration of PGE-Cu-Ni Magmatic Sulfide Deposits in Xinjiang, NW China: As Suggested by Sr-Nd-Hf Isotopes, Sedimentology and Geophysical Data. Ore Geology Reviews, 72: 538–545. doi:10.1016/j.oregeorev.2015.07.020

    Article  Google Scholar 

  • Liu, Y. L., Guo, L. S., Liu, Y. D., et al., 2009. Geochronology of Baogutu Porphyry Copper Deposit in Western Junggar Area, Xinjiang of China. Science in China Series D: Earth Sciences, 52(10): 1543–1549. doi:10.1007/s11430-009-0127-7

    Article  Google Scholar 

  • Lü, Z., Zhang, L., Du, J., et al., 2009. Petrology of Coesite-Bearing Eclogite from Habutengsu Valley, Western Tianshan, NW China and Its Tectonometamorphic Implication. Journal of Metamorphic Geology, 27(9): 773–787. doi:10.1111/j.1525-1314.2009.00845.x

    Article  Google Scholar 

  • Luo, Z. H., Chen, B. H., Jiang, X. M., et al., 2012. A Preliminary Attemp for Targeting Prospecting Districts Using the Wide Composition-Spectrum Dike Swarms: An Example of the South Alatao Mountains, Xinjiang, China. Acta Petrologica Sinica, 28(7): 1949–1965 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, X. P., Zong, P., Sun, Y. L., 2011. The Devonian (Famennian) Sequence in the Western Junggar Area, North Xinjiang, China. Subcommission on Devonian Stratigraphy: SDS Newsletter, 26: 44–49

    Google Scholar 

  • Ma, X. P., Zong, P., Zhang, M. Q., et al., 2015. Two New Stratigraphic Units of the Upper Devonian in the Northwest Border of the Junggar Basin, Xinjiang. Geology in China, 42(2): 695–709 (in Chinese with English Abstract)

    Google Scholar 

  • Maksumova, R. A., Dzhenchuraeva, A. V., Berezanskii, A. V., 2001. Structure and Evolution of the Tien Shan Nappe-Folded Orogen. Russian Geology and Geophysics, 42: 1367–1374

    Google Scholar 

  • Mao, J. W., Konopelko, D., Seltmann, R., et al., 2004. Postcollisional Age of the Kumtor Gold Deposit and Timing of Hercynian Events in the Tien Shan, Kyrgyzstan. Economic Geology, 99(8): 1771–1780. doi:10.2113/gsecongeo.99.8.1771

    Article  Google Scholar 

  • Mao, J. W., Pirajno, F., Lehmann, B., et al., 2014. Distribution of Porphyry Deposits in the Eurasian Continent and Their Corresponding Tectonic Settings. Journal of Asian Earth Sciences, 79: 576–584. doi:10.1016/j.jseaes.2013.09.002

    Article  Google Scholar 

  • Mao, X., Li, J. H., Zhang, H. T., 2014. Zircon U-Pb SHRIMP Ages from the Late Paleozoic Turpan-Hami Basin, NW China. Journal of Earth Science, 25(5): 924–931. doi:10.1007/s12583-014-0484-9

    Article  Google Scholar 

  • Meyer, M., Klemd, R., Konopelko, D., 2013. High-Pressure Mafic Oceanic Rocks from the Makbal Complex, Tianshan Mountains (Kazakhstan & Kyrgyzstan): Implications for the Metamorphic Evolution of a Fossil Subduction Zone. Lithos, 177: 207–225. doi:10.1016/j.lithos.2013.06.015

    Article  Google Scholar 

  • Mikolaichuk, A. V., Kurenkov, S. A., Degtyarev, K. E., et al., 1997. Northern Tien-Shan, Main Stages of Geodynamic Evolution in the Late Precambrian and Early Paleozoic. Geotectonics, 31: 445–462

    Google Scholar 

  • Milannuovski, E. E., 1987. Geology of USSR. Nauka, Moscow. 48–160 (in Russia)

    Google Scholar 

  • Morelli, R., Creaser, R. A., Seltmann, R., et al., 2007. Age and Source Constraints for the Giant Muruntau Gold Deposit, Uzbekistan, from Coupled Re-Os-He Isotopes in Arsenopyrite. Geology, 35(9): 795–798. doi:10.1130/g23521a.1

    Article  Google Scholar 

  • Mukhin, P. A., Abdullayev, K. A., Minayev, V. Y., et al., 1989. The Paleozoic Geodynamics of Central Asia. International Geology Review, 31(11): 1073–1083. doi:10.1080/00206818909465961

    Article  Google Scholar 

  • Orozbaev, R. T., Takasu, A., Bakirov, A. B., et al., 2010. Metamorphic History of Eclogites and Country Rock Gneisses in the Aktyuz Area, Northern Tien-Shan, Kyrgyzstan: A Record from Initiation of Subduction through to Oceanic Closure by Continent-Continent Collision. Journal of Metamorphic Geology, 28(3): 317–339. doi:10.1111/j.1525-1314.2010.00865.x

    Article  Google Scholar 

  • Orozbaev, R. T., Hirajima, T., Bakirov, A., et al., 2015. Trace Element Characteristics of Clinozoisite Pseudomorphs after Lawsonite in Talc-Garnet-Chloritoid Schists from the Makbal UHP Complex, Northern Kyrgyz Tian-Shan. Lithos, 226: 98–115. doi:10.1016/j.lithos.2014.10.008

    Article  Google Scholar 

  • Pasava, J., Frimmel, H., Vymazalová, A., et al., 2013. A Two-Stage Evolution Model for the Amantaytau Orogenic-Type Gold Deposit in Uzbekistan. Mineralium Deposita, 48(7): 825–840. doi:10.1007/s00126-013-0461-8

    Article  Google Scholar 

  • Pavlova, G. G., Borisenko, A. S., 2009. The Age of Ag-Sb Deposits of Central Asia and Their Correlation with Other Types of Ore Systems and Magmatism. Ore Geology Reviews, 35(2): 164–185. doi:10.1016/j.oregeorev.2008.11.006

    Article  Google Scholar 

  • Pirajno, F., Ernst, R. E., Borisenko, A. S., et al., 2009. Intraplate Magmatism in Central Asia and China and Associated Metallogeny. Ore Geology Reviews, 35(2): 114–136. doi:10.1016/j.oregeorev.2008.10.003

    Article  Google Scholar 

  • Qiu, T., Zhu, Y. F., 2015. Geology and Geochemistry of Listwaenite-Related Gold Mineralization in the Sayi Gold Deposit, Xinjiang, NW China. Ore Geology Reviews, 70: 61–79. doi:10.1016/j.oregeorev.2015.03.017

    Article  Google Scholar 

  • Ren, R., Han, B. F., Xu, Z., et al., 2014. When did the Subduction First Initiate in the Southern Paleo-Asian Ocean: New Constraints from a Cambrian Intra-Oceanic Arc System in West Junggar, NW China. Earth and Planetary Science Letters, 388: 222–236. doi:10.1016/j.epsl.2013.11.055

    Article  Google Scholar 

  • Rojas-Agramonte, Y., Herwartz, D., García-Casco, A., et al., 2013. Early Palaeozoic Deep Subduction of Continental Crust in the Kyrgyz North Tianshan: Evidence from Lu-Hf Garnet Geochronology and Petrology of Mafic Dikes. Contributions to Mineralogy and Petrology, 166(2): 525–543. doi:10.1007/s00410-013-0889-y

    Article  Google Scholar 

  • Samani, B., 2014. Tectonic Setting of the Barm Firuz Lake, Zagros Mountains, Iran: Inferred from Structural and Karstic Evidence. Journal of Earth Science, 25(5): 932–938. doi:10.1007/s12583-014-0474-y

    Article  Google Scholar 

  • Seltmann, R., Konopelko, D., Biske, G., et al., 2011. Hercynian Post-Collisional Magmatism in the Context of Paleozoic Magmatic Evolution of the Tien Shan Orogenic Belt. Journal of Asian Earth Sciences, 42(5): 821–838. doi:10.1016/j.jseaes.2010.08.016

    Article  Google Scholar 

  • Seltmann, R., Porter, T. M., Pirajno, F., 2014. Geodynamics and Metallogeny of the Central Eurasian Porphyry and Related Epithermal Mineral Systems: A Review. Journal of Asian Earth Sciences, 79: 810–841. doi:10.1016/j.jseaes.2013.03.030

    Article  Google Scholar 

  • Sengör, A. M. C., Natal’in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., Harrison, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge. 486–640

    Google Scholar 

  • Shatsky, V. S., Jagoutz, E., Sobolev, N. V., et al., 1999. Geochemistry and Age of Ultrahigh Pressure Metamorphic Rocks from the Kokchetav Massif (Northern Kazakhstan). Contributions to Mineralogy and Petrology, 137: 185–205

    Article  Google Scholar 

  • Shen, P., Pan, H. D., Xiao, W. J., et al., 2013. Two Geodynamic-Metallogenic Events in the Balkhash (Kazakhstan) and the West Junggar (China): Carboniferous Porphyry Cu and Permian Greisen W-Mo Mineralization. International Geology Review, 55(13): 1660–1687. doi:10.1080/00206814.2013.792500

    Article  Google Scholar 

  • Shen, X. M., Zhang, H. X., Wang, Q., et al., 2015. Early Silurian (∼440 Ma) Adakitic, Andesitic and Nb-Enriched Basaltic Lavas in the Southern Altay Range, Northern Xinjiang (Western China): Slab Melting and Implications for Crustal Growth in the Central Asian Orogenic Belt. Lithos, 206/207: 234–251. doi:10.1016/j.lithos.2014.07.024

    Article  Google Scholar 

  • Simonov, V. A., Mikolaichuk, A. V., Safonova, I. Y., et al., 2015. Late Paleozoic–Cenozoic Intra-Plate Continental Basaltic Magmatism of the Tienshan-Junggar Region in the SW Central Asian Orogenic Belt. Gondwana Research, 27(4): 1646–1666. doi:10.1016/j.gr.2014.03.001

    Article  Google Scholar 

  • Sobolev, N. V., Schertl, H. P., Burchard, M., et al., 2001. An Unusual Pyrope-Grossular Garnet and Its Paragenesis from Diamondiferous Carbonate Silicate Rocks of the Kokchetav Massif, Kazakhstan. Dokl Earth Sci., 380: 791–794

    Google Scholar 

  • Sobolev, N. V., Schertl, H. P., Valley, J. W., et al., 2011. Oxygen Isotope Variations of Garnets and Clinopyroxenes in a Layered Diamondiferous Calcsilicate Rock from Kokchetav Massif, Kazakhstan: A Window into the Geochemical Nature of Deeply Subducted UHPM Rocks. Contributions to Mineralogy and Petrology, 162(5): 1079–1092. doi:10.1007/s00410-011-0641-4

    Article  Google Scholar 

  • Sobolev, N. V., Shatsky, V. S., 1990. Diamond Inclusions in Garnets from Metamorphic Rocks: A New Environment for Diamond Formation. Nature, 343(6260): 742–746. doi:10.1038/343742a0

    Article  Google Scholar 

  • Su, B. X., Qin, K. Z., Sun, H., et al., 2012. Olivine Compositional Mapping of Mafic-Ultramafic Complexes in Eastern Xinjiang (NW China): Implications for Cu-Ni Mineralization and Tectonic Dynamics. Journal of Earth Science, 23(1): 41–53. doi:10.1007/s12583-012-0232-y

    Article  Google Scholar 

  • Tagiri, M., Takiguchi, S., Ishida, C., et al., 2010. Intrusion of UHP Metamorphic Rocks into the Upper Crust of Kyrgyzian Tien-Shan: P-T Path and Metamorphic Age of the Makbal Complex. Journal of Mineralogical and Petrological Sciences, 105(5): 233–250. doi:10.2465/jmps.071025

    Article  Google Scholar 

  • Tang, L. J., Huang T. Z., Qiu, H. J., et al., 2014. Fault Systems and Their Mechanisms of the Formation and Distribution of the Tarim Basin, NW China. Journal of Earth Science, 25(1): 169–182. doi:10.1007/s12583-014-0410-1

    Article  Google Scholar 

  • Togonbaeva, A., Takasu, A., Bakirov, A. A., et al., 2009. CHIME Monazite Ages of Garnet-Chloritoid-Talc Schists in the Makbal Complex, Northern Kyrgyz Tien-Shan: First Report of the Age of the UHP Metamorphism. Journal of Mineralogical and Petrological Sciences, 104(2): 77–81. doi:10.2465/jmps.081022e

    Article  Google Scholar 

  • Wang, B., Chen, Y., Zhan, S., et al., 2007. Primary Carboniferous and Permian Paleomagnetic Results from the Yili Block (NW China) and Their Implications on the Geodynamic Evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters, 263(3/4): 288–308. doi:10.1016/j.epsl.2007.08.037

    Article  Google Scholar 

  • Wang, B., Jahn, B. M., Shu, L. S., et al., 2012. Middle–Late Ordovician Arc-Type Plutonism in the NW Chinese Tianshan: Implication for the Accretion of the Kazakhstan Continent in Central Asia. Journal of Asian Earth Sciences, 49: 40–53. doi:10.1016/j.jseaes.2011.11.005

    Article  Google Scholar 

  • Wang, L., Zhu, Y. F., 2015. Multi-Stage Pyrite and Hydrothermal Mineral Assemblage of the Hatu Gold District (west Junggar, Xinjiang, NW China): Implications for Metallogenic Evolution. Ore Geology Reviews, 69: 243–267. doi:10.1016/j.oregeorev.2015.02.021

    Article  Google Scholar 

  • Wang, S., Sun, F. Y., Qian, Z. Z., et al., 2014. Magmatic Evolution and Metal Element Enrichment during Formation of the Niumaoquan Magnetite Ore Deposit, Xinjiang, China. Ore Geology Reviews, 63: 64–75. doi:10.1016/j.oregeorev.2014.04.021

    Article  Google Scholar 

  • Wei, S. N., Cheng, J. F., Yu, D. B., et al., 2011. Petrology and SHRIMP Zircon Ages of Intrusive Body III in Baogutu Area, Xinjiang. Earth Science Frontiers, 18: 212–222 (in Chinese with English Abstract)

    Google Scholar 

  • Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia: A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4): 303–341. doi:10.1016/j.earscirev.2012.04.001

    Article  Google Scholar 

  • Windley, B. F., Alexeiev, D., Xiao, W., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. doi:10.1144/0016-76492006-022

    Article  Google Scholar 

  • Xiao, W. J., Kusky, T., Safonova, I., et al., 2015. Tectonics of the Central Asian Orogenic Belt and Its Pacific Analogues. Journal of Asian Earth Sciences, 113: 1–6. doi:10.1016/j.jseaes.2015.06.032

    Article  Google Scholar 

  • Xue, C. J., Chi, G. X., Li, Z. D., et al., 2014. Geology, Geochemistry and Genesis of the Cretaceous and Paleocene Sandstone-and Conglomerate-Hosted Uragen Zn-Pb Deposit, Xinjiang, China: A Review. Ore Geology Reviews, 63: 328–342. doi:10.1016/j.oregeorev.2014.06.005

    Article  Google Scholar 

  • Xue, J. Z., Wang, Q., Wang, D. M., et al., 2015. New Observations of the Early Land Plant Eocooksonia Doweld from the Pridoli (Upper Silurian) of Xinjiang, China. Journal of Asian Earth Sciences, 101: 30–38. doi:10.1016/j.jseaes.2015.02.003

    Article  Google Scholar 

  • Yakubchuk, A. S., Shatov, V. V., Kirwin, D., et al., 2005. Gold and Base Metal Metallogeny of the Central Asian Orogenic Supercollage. Economic Geology, 100: 1035–1068

    Google Scholar 

  • Yakubchuk, A., 2004. Architecture and Mineral Deposit Settings of the Altaid Orogenic Collage: A Revised Model. Journal of Asian Earth Sciences, 23(5): 761–779. doi:10.1016/j.jseaes.2004.01.006

    Article  Google Scholar 

  • Yakubchuk, A., Schlodeer, J., Woodcock, J., et al., 2011. Taldybulak Au-Cu-Mo Deposit: A New >5 Moz Au (11.7 Moz Au eq) Prdovician Porphyry Hosted Gold System in Kyrgzstan, Central Asia. Abstract Volume with Program for CERCAMS 14 & MDSG, 34: 14

    Google Scholar 

  • Yang, F. Q., Chai, F. M., Zhang, Z. X., et al., 2014. Zircon U-Pb Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of Granitoids in the Yulekenhalasu Copper Ore District, Northern Junggar, China: Petrogenesis and Tectonic Implications. Lithos, 190/191: 85–103. doi:10.1016/j.lithos.2013.12.003

    Article  Google Scholar 

  • Yang, F. Q., Liu, D. Q., Zhao, C. S., et al., 2010. Geology and Mineral Resources in Northern and Western Xinjiang, China and Its Adjacent Regions. Geology Publishing House, Beijing. 322 (in Chinese)

    Google Scholar 

  • Yang, F. Q., Mao, J. W., Pirajno, F., et al., 2012. A Review of the Geological Characteristics and Geodynamic Setting of Late Paleozoic Porphyry Copper Deposits in the Junggar Region, Xinjiang Uygur Autonomous Region, Northwest China. Journal of Asian Earth Sciences, 49: 80–98. doi:10.1016/j.jseaes.2011.11.024

    Article  Google Scholar 

  • Yang, G. X., Li, Y. J., Xiao, W. J., et al., 2015. OIB-Type Rocks within West Junggar Ophiolitic Mélanges: Evidence for the Accretion of Seamounts. Earth-Science Reviews, 150: 477–496. doi:10.1016/j.earscirev.2015.09.002

    Article  Google Scholar 

  • Yuan, F., Zhou, T. F., Zhang, D. Y., et al., 2012. Siderophile and Chalcophile Metal Variations in Basalts: Implications for the Sulfide Saturation History and Ni-Cu-PGE Mineralization Potential of the Tarim Continental Flood Basalt Province, Xinjiang Province, China. Ore Geology Reviews, 45: 5–15. doi:10.1016/j.oregeorev.2011.04.003

    Article  Google Scholar 

  • Zhang, L. F., Ai, Y. L., Song, S. G., et al., 2007. A Brief Review of UHP Meta-Ophiolitic Rocks, Southwestern Tianshan, Western China. International Geology Review, 49(9): 811–823. doi:10.2747/0020-6814.49.9.811

    Article  Google Scholar 

  • Zhang, L. F., Ellis, D. J., Jiang, W. B., 2002. Ultrahigh Pressure Metamorphism in Western Tianshan, China, Part I: Evidences from the Inclusion of Coesite Pseudomorphs in Garnet and Quartz Exsolution Lamellae in Omphacite in Eclogites. American Mineralogist, 87: 853–860

    Article  Google Scholar 

  • Zhang, Z., Mao, J., Chai, F., et al., 2009. Geochemistry of the Permian Kalatongke Mafic Intrusions, Northern Xinjiang, Northwest China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits. Economic Geology, 104(2): 185–203. doi:10.2113/gsecongeo.104.2.185

    Article  Google Scholar 

  • Zhao, L., He, G. Q., 2013. Tectonic Entities Connection between West Junggar (NW China) and East Kazakhstan. Journal of Asian Earth Sciences, 72: 25–32. doi:10.1016/j.jseaes.2012.08.004

    Article  Google Scholar 

  • Zhao, X. B., Xue, C. J., Symons, D. T. A., et al., 2014. Microgranular Enclaves in Island-Arc Andesites: A Possible Link between Known Epithermal Au and Potential Porphyry Cu-Au Deposits in the Tulasu Ore Cluster, Western Tianshan, Xinjiang, China. Journal of Asian Earth Sciences, 85: 210–223. doi:10.1016/j.jseaes.2014.01.014

    Article  Google Scholar 

  • Zhou, Q. F., Qin, K. Z., Tang, D. M., et al., 2015. Mineralogy of the Koktokay No. 3 Pegmatite, Altai, NW China: Implications for Evolution and Melt-fluid Processes of Rare-Metal Pegmatites. European Journal of Mineralogy, 27(3): 433–457. doi:10.1127/ejm/2015/0027-2443

    Article  Google Scholar 

  • Zhou, T. F., Yuan, F., Fan, Y., et al., 2008. Granites in the Sawuer Region of the West Junggar, Xinjiang Province, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance. Lithos, 106(3/4): 191–206. doi:10.1016/j.lithos.2008.06.014

    Article  Google Scholar 

  • Zhou, T. F., Yuan, F., Zhang, D. Y., et al., 2015. Genesis of the Granitoids Intrusions in Tabei Area, West Jungar, North West China: Evidences from Geological and Geochemical Characteristics. Acta Petrologica Sinica, 31(2): 351–370 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, Y. F., 2011. Zircon U-Pb and Muscovite 40Ar/39Ar Geochronology of the Gold-Bearing Tianger Mylonitized Granite, Xinjiang, Northwest China: Implications for Radiometric Dating of Mylonitized Magmatic Rocks. Ore Geology Reviews, 40(1): 108–121. doi:10.1016/j.oregeorev.2011.05.007

    Article  Google Scholar 

  • Zhu, Y. F., Chen, B., Qiu, T., 2015. Geology and Geochemistry of the Baijiantan-Baikouquan Ophiolitic Mélanges: Implications for Geological Evolution of West Junggar, Xinjiang, NW China. Geological Magazine, 152(1): 41–69. doi:10.1017/s0016756814000168

    Article  Google Scholar 

  • Zhu, Y. F., Chen, B., Xu, X., et al., 2013. A New Geological Map of the Western Junggar, North Xinjiang (NW China): Implications for Paleoenvironmental Reconstruction. Episodes, 36: 205–220

    Google Scholar 

  • Zhu, Y. F., Ogasawara, Y., 2002. Carbon Recycled into Deep Earth: Evidence from Dolomite Dissociation in Subduction-Zone Rocks. Geology, 30(10): 947. doi:10.1130/0091-7613(2002)030〈0947:cridee〉2.0.co;2

    Article  Google Scholar 

  • Zhu, Y. F., Tan, J. J., Qiu, T., 2016. Platinum Group Mineral (PGM) and Fe-Ni-As-S Minerals in the Sartohay Chromitite, Xinjiang (NW China): Implications for the Mobility of Os, Ir, Sb, and as during Hydrothermal Processes. Ore Geology Reviews, 72: 299–312. doi:10.1016/j.oregeorev.2015.08.001

    Article  Google Scholar 

  • Zhu, Y. F., Xu, X., Luo, Z. H., et al., 2014. Geological Evolution and Ore-Formation in the Core Part of Central Asian Metallogenic Region. Geological Publishing House, Beijing. 202 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, Y., Guo, X., Song, B., et al., 2009. Petrology, Sr-Nd-Hf Isotopic Geochemistry and Zircon Chronology of the Late Palaeozoic Volcanic Rocks in the Southwestern Tianshan Mountains, Xinjiang, NW China. Journal of the Geological Society, 166(6): 1085–1099. doi:10.1144/0016-76492008-130

    Article  Google Scholar 

  • Zonenshain, L. P., Kuzmin, M. I., Natapov, L. M., 1990. Geology of the USSR: A Plate-Tectonic Synthesis. Geodynamics Series 21, American Geophysical Union, Washington. 242

    Google Scholar 

  • Zong, P., Becker, R. T., Ma, X. P., 2015. Upper Devonian (Famennian) and Lower Carboniferous (Tournaisian) Ammonoids from Western Junggar, Xinjiang, Northwestern China—Stratigraphy, Taxonomy and Palaeobiogeography. Palaeobiodiversity and Palaeoenvironments, 95(2): 159–202. doi:10.1007/s12549-014-0171-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., An, F., Feng, W. et al. Geological evolution and huge ore-forming belts in the core part of the Central Asian metallogenic region. J. Earth Sci. 27, 491–506 (2016). https://doi.org/10.1007/s12583-016-0673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-016-0673-7

Key words

Navigation