Skip to main content
Log in

Earth’s solid inner core: Seismic implications of freezing and melting

  • Special Column on East-West Asymmetry of the Inner Core and Earth Rotational Dynamics
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Seismic P velocity structure is determined for the upper 500 km of the inner core and lowermost 200 km of the outer core from differential travel times and amplitude ratios. Results confirm the existence of a globally uniform F region of reduced P velocity gradient in the lowermost outer core, consistent with iron enrichment near the boundary of a solidifying inner core. P velocity of the inner core between the longitudes 45°E and 180°E (quasi-Eastern Hemisphere) is greater than or equal to that of an AK135-F reference model whereas that between 180°W and 45°E (quasi-Western Hemisphere) is less than that of the reference model. Observation of this heterogeneity to a depth of 550 km below the inner core and the existence of transitions rather than sharp boundaries between quasi-hemispheres favor either no or very slow inner core super rotation or oscillations with respect to the mantle. Degree-one seismic heterogeneity may be best explained by active inner core freezing beneath the equatorial Indian Ocean dominating structure in the quasi-Eastern Hemisphere and inner core melting beneath equatorial Pacific dominating structure in the quasi-Western Hemisphere. Variations in waveforms also suggest the existence of smaller-scale (1 to 100 km) heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Alboussière, T., Deguen, R., Melzani, M., 2010. Melting-Induced Stratification above the Earth’s Inner Core due to Convective Tanslation. Nature, 466(7307): 744–747

    Article  Google Scholar 

  • Aster, R. C., Borcher, B., Thurber, C. H., 2004. Parameter Estimation and Inverse Problems. Academic Press, Amsterdam. 320

    Google Scholar 

  • Aubert, J., Amit, H., Hulot, G., et al., 2008. Thermochemical Flows Couple the Earth’s Inner Core Growth to Mantle Heterogeneity. Nature, 454: 758–761

    Article  Google Scholar 

  • Bergman, I., 1997. Measurements of Elastic Anisotropy due to Solidification Texturing and the Implications for the Earth’s Inner Core. Nature, 389: 60–63

    Article  Google Scholar 

  • Bullen, K. E., 1942. The Density Variation of the Earths Central Core. Bull. Seismol. Soc. Amer., 32: 19–29

    Google Scholar 

  • Calkins, M. A., Noir, J., Eldredge, J. D., et al., 2012. The Effects of Boundary Topography on Convection in Earth’s Core. Geophys. J. Int., 189: 799–814

    Article  Google Scholar 

  • Calvet, M., Margerin, L., 2008. Constraints on Grain Size and Stable Iron Phases in the Uppermost Inner Core from Multiple Scattering Modeling of Seismic Velocity and Attenuation. Earth Planet. Sci. Lett., 267: 200–212

    Article  Google Scholar 

  • Cao, A., Masson, Y., Romanowicz, B., 2006. Short Wavelength Topography on the Inner-Core Boundary. Proc. Nat. Acad. Sci., 104: 31–35

    Article  Google Scholar 

  • Cao, A., Romanowicz, B., 2007. Test of the Innermost Inner Core Models Using Broadband PKIKP Travel Time Residuals. Geophys. Res. Lett., 34(8): L08303, doi:10.1029/2007GL029384

    Article  Google Scholar 

  • Cormier, V. F., 2011. Seismic Viscoleastic Attenuation. In: Gupta, H. K., ed., Encyclopedia of Earth Sciences Series, Encyclopedia of Solid Earth Geophysics. 1279–1290, doi: 10.1007/978-90-481-8702-7

    Google Scholar 

  • Cormier, V. F., Attanayake, J., He, K., 2011. Inner Core Freezing and Melting: Constraints from Seismic Body Waves. Phys. Earth Planet. Int., 188: 163–172

    Article  Google Scholar 

  • Cormier, V. F., Li, X., 2002. Frequency Dependent Attenuation in the Inner Core: Part II. A Scattering and Fabric Interpretation. J. Geophys. Res., 107(B12): ESE 14-1–ESE 4-15, doi:10.1029/2002JB1796

    Article  Google Scholar 

  • Cormier, V. F., Li, X., Choy, G. L., 1998. Seismic Atenuation of the Inner Core: Viscoelastic or Stratigraphic?. Geophys. Res. Lett., 25(21): 4019–4022

    Article  Google Scholar 

  • Cormier, V. F., Richards, P. G., 1976. Comments on “The Damping of Core Waves” by Anthony Qamar and Alfredo Eisenberg. J. Geophys. Res., 81: 3066–3068

    Article  Google Scholar 

  • Creager, K. C., 1992. Anisotropy of the Inner Core from Differential Travel Times of the Phases PKP and PKIKP. Nature, 356: 309–314

    Article  Google Scholar 

  • Creager, K. C., 1999. Large-Scale Variations in Inner Core Anisotropy. J. Geophys. Res., 104(B10): 23127–23139

    Article  Google Scholar 

  • Dai, Z., Wang, W., Wen, L., 2012. Irregular Topography at the Earth’s Inner Core Boundary. Proc. Nat. Acad. Sci., 109(20): 7654–7658, doi:10.1073/pnas.1116342109

    Article  Google Scholar 

  • Deguen, R., Cardin, P., 2011. Thermo-Chemical Convection in the Earth’s Inner Core. Geophys. J. Int., 187(3): 1101–1118

    Article  Google Scholar 

  • Deuss, A., Irving, J. C. E., Woodhouse, J., 2010. Regional Variation of Inner Core Anisotropy from Seismic Normal Mode Observations. Science, 328: 1018–1020

    Article  Google Scholar 

  • Doornbos, D. J., 1983. Observable Effects of the Seismic Absorption Band in the Earth. Geophys. J. R. Astr. Soc., 75: 693–711

    Article  Google Scholar 

  • Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Phys. Earth Planet. Int., 25: 297–356

    Article  Google Scholar 

  • Garcia, R., 2002. Constraints on Upper Inner-Core Structure from Waveform Inversion of Core Phases. Geophys. J. Int., 150: 651–664

    Article  Google Scholar 

  • Garcia, R., Tkalčić, H., Chevrot, S., 2006. A New Global PKP Data Set to Study Earth’s Core and Deep Mantle. Phys. Earth. Planet. Inter., 159(1): 15–31, doi:10.1016/j.pepi.2006.05.003

    Article  Google Scholar 

  • Gubbins, D., Sreenivasan, B., Mound, J., et al., 2011. Melting of the Earth’s Inner Core. Nature, 473: 361–363

    Article  Google Scholar 

  • Irving, J. C. E., Deuss, A., 2011. Hemispherical Structure in Inner Core Velocity Anisotropy. J. Geophys. Res., 116(B4), doi:10.1029/2010JB007942

    Google Scholar 

  • Ishii, M., Dziewonski, A. M., 2002. The Innermost Inner Core of the Earth: Evidence for a Change in Anisotropic Behavior at the Radius of about 300 km. Proc. Nat. Acad. Sci., 99: 14025–14030

    Google Scholar 

  • Kaneshima, S. Hirahara, K., Ohtaki, T., et al., 1994. Seismic Structure near the Inner Core-Outer Core Boundary. Geophys. Res. Lett., 21(2): 157–160

    Article  Google Scholar 

  • Kennett, B. L. N., 1983. Seismic Wave Propagation in Stratified Media. Cambridge University Press, Cambridge. 339

    Google Scholar 

  • Kennett, B. L. N., Engdahl, E. R., Buland, R., 1995. Constraints on Seismic Velocities in the Earth from Taveltimes. Geophys. J. Int., 122: 108–124

    Article  Google Scholar 

  • Kennett, B. L. N., Gudmundsson, O., 1996. Ellipticity Corrections for Seismic Phases. Geophys. J. Int., 127: 40–48

    Article  Google Scholar 

  • Koper, K. D., Franks, J. M., Dombrovskaya, M., 2004. Evidence for Small-Scale Heterogeneity Earth’s Inner Core from a Global Study of PKiKP Coda Waves. Earth Planet. Sci. Lett., 224: 227–241

    Article  Google Scholar 

  • Krasnoshchekov, D. N., Kaazik, P. B., Ovtchinnikov, V. M., 2005. Seismological Evidence for Mosaic Structure of the Surface of the Earth’s Inner Core. Nature, 435(7041): 483–487

    Article  Google Scholar 

  • Lehmann, I., 1936. P’. Publications du Bureau Central Seismologique International, SÈrie A, Travaux Scientifique, 14: 87–115

    Google Scholar 

  • Leyton, F., Koper, K. D., 2007. Using PKiKP Coda to Determine Inner Core Structure: 2. Determination of QC. J. Geophys. Res., 112: B05317, doi:10.1029/2006JB004370

    Article  Google Scholar 

  • Li, X., Cormier, V. F., 2002. Frequency Dependent Attenuation in the Inner Core. Part I: A Viscoelastic Interpretation. J. Geophys. Res., 107(B12): 2362, doi:10.1029/2002JB001795

    Article  Google Scholar 

  • Mattesini, M., Belonoshko, A. B., Ramìrez, E. B. M., et al., 2010. Hemispherical Anisotropic Patterns of the Earth’s Inner Core. Proc. Nat. Acad. Sci., 107(21): 9507–9512

    Article  Google Scholar 

  • Monnereau, M., Calvet, M., Margerin, L., et al., 2010. Lopsided Growth of Earth’s Inner Core. Science, 328(5981): 1014–1017

    Article  Google Scholar 

  • Montagner, J. P., Kennett, B. L. N., 1995. How to Reconcile Body-Wave and Normal-Mode Reference Earth Models?. Geophys. J. Int., 125: 229–248

    Article  Google Scholar 

  • Morelli, A., Dziewonski, A. M., Woodhouse, J., 1986. Anisotropy of the Inner Core Inferred from PKIKP Travel Times. Geophys. Res. Lett., 13: 1545–1548

    Article  Google Scholar 

  • Niu, F., Wen, L., 2001. Hemispherical Variations in Seismic Velocity at the Top of the Earth’s Inner Core. Nature, 410: 1081–1084

    Article  Google Scholar 

  • Niu, F., Wen, L., 2002. Seismic Anisotropy in the Top 400 km of the Inner Core beneath the “Eastern” Hemisphere. Geophys. Res. Lett., 29: 12, doi:10.1029/2001GL014118

    Article  Google Scholar 

  • Niu, F., Wen, L., 2003. Difference in the Seismic Velocity between the Eastern and the Western Hemispheres in the Top of the Earth’s Inner Core. Global Tectonics and Metallogeny, 8(1–4): 109–111

    Google Scholar 

  • Ohtaki, T., Kaneshima, S., Kanjo, K., 2012. Seismic Structure near the Inner Core Boundary in the South Polar Region. J. Geophys. Res., 117: B03312, doi:10.1029/2011JB008717

    Article  Google Scholar 

  • Oreshin, S. I., Vinnik, L. P., 2004. Heterogeneity and Anisotropy of Seismic Attenuation in the Inner Core. Geophys. Res. Lett., 31: L02613, doi:10.1029/2003GL018591

    Article  Google Scholar 

  • Ouzounis, A., Creager, K. C., 2001. Isotropy Overlying Anisotropy at the Top of the Inner Core. Geophys. Res. Lett., 28(22): 4331–4334, doi:10.1029/2001GL013341

    Article  Google Scholar 

  • Owens, T. J., Crotwell, H. P., Groves, C., et al., 2004. SOD: Standing Order for Data. Seismol. Res. Lett., 75: 515–520

    Google Scholar 

  • Reaman, D. M., Daehn, G. S., Panero, W. R., 2011. Predictive Mechanism for Anisotropy Development in Earth’s Inner Core. Earth Planet. Sci. Lett., 312: 437–442

    Article  Google Scholar 

  • Shearer, P. M., 1994. Constraints on Inner Core Anisotropy from PKP(DF) Tavel Times. J. Geophys. Res., 99(B10): 19647–19659

    Article  Google Scholar 

  • Shearer, P. M., Toy, K. M., 1991. PKP(BC) versus PKP(DF) Differential Travel Times and Aspherical Structure in the Earth’s Inner Core. J. Geophys. Res., 96: 2233–2247

    Article  Google Scholar 

  • Song, X. D., Helmberger, D. V., 1992. Velocity Structure near the Inner Core Boundary from Waveform Modeling. J. Geophys. Res., 97(B5): 6573–6586

    Article  Google Scholar 

  • Song, X. D., Helmberger, D. V., 1995. A P Wave Velocity Model of Earth’s Core. J. Geophys. Res., 100(B7): 9817–9830

    Article  Google Scholar 

  • Song, X. D., Helmberger, D. V., 1998. Seismic Evidence for an Inner Core Tansition Zone. Science, 282: 924–927

    Article  Google Scholar 

  • Souriau, A., Poupinet, G., 1991. The Velocity Profile at the Base of the Liquid Core from PKP(BC+Cdiff) Data: An Argument in Favour of Radial Heterogeneity. Geophys. Res. Lett., 18, doi:10.1029/91GL02417

    Google Scholar 

  • Souriau, A., Romanowicz, B., 1996. Anisotropy in Inner Core Attenuation: A New Type of Data to Constrain the Nature of the Solid Core. Geophys. Res. Lett., 23: 1–4

    Article  Google Scholar 

  • Stroujkova, A., Cormier, V. F., 2004. Regional Variations in the Upppermost 100 km of the Earth’s Inner Core. J. Geophys. Res., 109(B10): B10307, doi:10.129/2004JB002976

    Article  Google Scholar 

  • Sun, X. L., Song, X. D., 2008. Tomographic Inversion for Three-dimensional Anisotropy of Earth’s Inner Core. Phys. Earth Planet. Inter., 167: 53–70

    Article  Google Scholar 

  • Tanaka, S., 2012. Depth Extent of Hemispherical Inner Core from PKP(DF) and PKP(Cdiff) for Equatorial Paths. Phys. Earth Planet. Int., 210: 50–62

    Article  Google Scholar 

  • Tanaka, S., Hamaguchi, H., 1997. Degree One Heterogeneity and Hemispherical Variation of Anisotropy in the Inner Core from PKP(BC)-PKP(DF) Times. J. Geophys. Res., 102(B2): 2925–2938

    Article  Google Scholar 

  • Tkalčić, H., Kennett, B. L. N., Cormier, V. F., 2009. On the Inner-Outer Core Density Cntrast from PKiKP/PcP Amplitude Ratios and Uncertainties Caused by Seismic Noise. Geophys. J. Int., 179: 425–443, doi:10.1111/j.1365-246X.2009.04294.x

    Article  Google Scholar 

  • Tromp, J., 1993. Support for Anisotropy of the Earth’s Inner Core from Free Oscillations. Nature, 366: 678–681

    Article  Google Scholar 

  • Tseng, T. L., Huang, B. S., 2001. Depth Dependent Attenuation in the Uppermost Inner Core from the Taiwan Short Period Seismic Array PKP Data. Geophys. Res. Lett., 28(3): 459–462

    Article  Google Scholar 

  • Van Orman, J. A., 2004. On the Viscosity and Creep Mechanism of Earth’s Inner Core. Geophys. Res. Lett., 31: L20606, doi:10.1029/2004GL021209

    Article  Google Scholar 

  • Vidale, J. E., Earle, P., 2000. Fine Scale Heterogeneity in the Earth’s Inner Core. Nature, 404: 273–275

    Article  Google Scholar 

  • Waszek, L., Deuss, A., 2011. Distinct Layering in the Hemispherical Seismic Velocity Structure of Earth’s Upper Inner Core. J. Geophys. Res., 116: B12313, doi:10.1029/2011JB008650

    Article  Google Scholar 

  • Woodhouse, J. H., Giardini, D., Li, X., 1986. Evidence for Inner Core Anisotropy from Free Ocillations. Geophys. Res. Lett., 13: 1549–1552, doi:10.1029/GL013i013p01549

    Article  Google Scholar 

  • Wookey, J., Helffrich, G., 2008. Inner-Core Shear-Wave Anisotropy and Texture from an Observation of PKJKP. Nature, 454: 873–876

    Article  Google Scholar 

  • Yu, W. C., Wen, L., 2006. Seismic Velocity and Attenuation Structures in the Top 400 km of the Earth’s Inner Core along Equatorial Paths. J. Geophys. Res., 111: B07308, doi:10.1029/2005JB003995

    Article  Google Scholar 

  • Yu, W., Wen, L., Niu, F., 2005. Seismic Velocity Structure in the Earth’s Outer Core. J. Geophys. Res., 110: B02302, doi:10.1029/2003JB002928

    Article  Google Scholar 

  • Zhang, J., Richards, P. G., Schaff, D. P., 2008. Wide-Scale Detection of Earthquake Waveform Doublets and Further Evidence for Inner Core Super-Rotation. Geophys. J. Int., 174: 993–1006

    Article  Google Scholar 

  • Zou, Z., Koper, K., Cormier, V. F., 2008. The Structure of the Base of the Outer Core Inferred from Seismic Waves Diffracted around the Inner Core. J. Geophys. Res., 113(B5): B05314, doi:10.1029/2007JB005316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon F. Cormier.

Additional information

This study was supported by the National Science Foundation of USA (Nos. EAR 07-38492 and EAR 11-60917).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cormier, V.F., Attanayake, J. Earth’s solid inner core: Seismic implications of freezing and melting. J. Earth Sci. 24, 683–698 (2013). https://doi.org/10.1007/s12583-013-0363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-013-0363-9

Key Words

Navigation