Skip to main content
Log in

Melt evolution above a spontaneously retreating subducting slab in a three-dimensional model

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Dehydration of the subducting slab favors the melting of the surrounding mantle. Water content and melt evolution atop a spontaneously retreating subducting slab are reported in a three-dimensional (3-D) model. We find that fluids, including water and melts in the rocks, vary substantially along the trench, which cannot be found in two-dimensional (2-D) models. Their maxima along the subducting slab are mainly located at about 50 to 70 and 120 to 140 km. Volumetric melt production rate changes spatially and episodically atop the slab, which may reflect the intensity and variations of volcanoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Arcay, D., Tric, E., Doin, M. P., 2005. Numerical Simulations of Subduction Zones: Effect of Slab Dehydration on the Mantle Wedge Dynamics. Phys. Earth Planet. Inter., 149(1–2): 133–153

    Article  Google Scholar 

  • Blacic, J. D., 1972. Effects of Water on the Experimental Deformation of Olivine. In: Heard, H. C., Borg, I. Y., Carter, N. L., et al., eds., Flow and Fracture of Rocks. American Geophysical Union, Washington DC. 109–115

    Google Scholar 

  • Conder, J. A., Wiens, D. A., 2007. Rapid Mantle Flow beneath the Tonga Volcanic Arc. Earth Planet. Sci. Lett., 264(1–2): 299–307

    Article  Google Scholar 

  • de Ronde, C. E. J., Baker, E. T., Massoth, G. J., et al., 2007. Submarine Hydrothermal Activity along the Mid-Kermadec Arc, New Zealand: Large-Scale Effects on Venting. Geochem., Geophys., Geosyst., 8: Q07007

    Article  Google Scholar 

  • Gerya, T. V., 2010. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerya, T. V., Connolly, J. A. D., Yuen, D. A, et al., 2006. Seismic Implications of Mantle Wedge Plumes. Phys. Earth Planet. Int., 156: 59–74

    Article  Google Scholar 

  • Gerya, T. V., Connolly, J. A. D., Yuen, D. A., 2008. Why is Terrestrial Subduction One-Sided? Geology, 36: 43–46

    Article  Google Scholar 

  • Gerya, T. V., Stoeckhert, B., Perchuk, A. L., 2002. Exhumation of High-Pressure Metamorphic Rocks in a Subduction Channel: A Numerical Simulation. Tectonics, 21(6): 1056. doi: 10.1029/2002TC001406

    Article  Google Scholar 

  • Gerya, T. V., Yuen, D. A., 2003a. Characteristics-Based Marker-in-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Phys. Earth Planet. Inter., 140(4): 293–318

    Article  Google Scholar 

  • Gerya, T. V., Yuen, D. A., 2003b. Rayleigh-Taylor Instabilities from Hydration and Melting Propel ‘Cold Plumes’ at Subduction Zones. Earth Planet. Sci. Lett., 212(1–2): 47–62

    Article  Google Scholar 

  • Gorczyk, W., Gerya, T. V., Connolly, J. A. D., et al., 2007. Growth and Mixing Dynamics of Mantle Wedge Plumes. Geology, 35: 587–590

    Article  Google Scholar 

  • Grove, T. L., Chatterjee, N., Parman, S. W., et al., 2006. The Influence of H2O on Mantle Wedge Melting. Earth Planet. Sci. Lett., 249(1–2): 74–89

    Article  Google Scholar 

  • Hall, P. S., Kincaid, C., 2001. Diapiric Flow at Subduction Zones: A Recipe for Rapid Transport. Science, 292(5526): 2472–2475

    Article  Google Scholar 

  • Hebert, L. B., Antoshechkina, P., Asimow, P., et al., 2009. Emergence of a Low-Viscosity Channel in Subduction Zones through the Coupling of Mantle Flow and Thermodynamics. Earth Planet. Sci. Lett., 278(3–4): 243–256

    Article  Google Scholar 

  • Hirth, G., Kohlstedt, D. L., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. In: Eiler, J. E., ed., Inside the Subduction Factory. American Geophysical Union, Washington DC. 83–105

    Google Scholar 

  • Honda, S., Gerya, T. V., Zhu, G., 2010. A Simple Three-Dimensional Model of Thermochemical Convection in the Mantle Wedge. Earth Planet. Sci. Lett., 290(3–4): 311–318

    Article  Google Scholar 

  • Iwamori, H., 1998. Transportation of H2O and Melting in Subduction Zones. Earth Planet. Sci. Lett., 160(1–2): 65–80

    Article  Google Scholar 

  • Karato, S. I., 2008. Deformation of Earth Materials: Introduction to the Rheology of the Solid Earth. Cambridge University Press, Cambridge. 463

    Google Scholar 

  • Karato, S. I., 2010. Rheology of the Earth’s Mantle: A Historical Review. Gondwana Research, 18(1): 17–45

    Article  Google Scholar 

  • Karato, S. I., Jung, H. Y., 1998. Water, Partial Melting and the Origin of Seismic Low Velocity and High Attenuation Zone in the Upper Mantle. Earth Planet. Sci. Lett., 157(3–4): 193–207

    Article  Google Scholar 

  • Karato, S. I., Jung, H. Y., 2003. Effects of Pressure on High-Temperature Dislocation Creep in Olivine. Poilosophical Magazine A, 83(3): 401–414

    Article  Google Scholar 

  • Kimura, J. I., Yoshida, T., 2006. Contributions of Slab Fluid, Mantle Wedge and Crust to the Origin of Quaternary Lavas in the NE Japan Arc. J. Petrol., 47(11): 2185–2232

    Article  Google Scholar 

  • Mysen, B. O., Boettcher, A. L., 1975. Melting of a Hydrous Mantle: II. Geochemistry of Crystals and Liquids Formed by Anatexis of Mantle Peridotite at High Pressures and High Temperatures as a Function of Controlled Activities of Water, Hydrogen, and Carbon Dioxide. J. Petrol., 16(3): 549–593

    Google Scholar 

  • Nikolaeva, K., Gerya, T. V., Connolly, J. A. D., 2008. Numerical Modelling of Crustal Growth in Intraoceanic Volcanic Arcs. Phys. Earth Planet. Inter., 171(1–4): 336–356

    Article  Google Scholar 

  • Peacock, S. M., 1990. Fluid Processes in Subduction Zones. Science, 248(4953): 329–337

    Article  Google Scholar 

  • Plank, T., Cooper, L. B., Manning, C. E., 2009. Emerging Geothermometers for Estimating Slab Surface Temperatures. Nature Geoscience, 2(9): 611–615

    Article  Google Scholar 

  • Ranalli, G., 1995. Rheology of the Earth. 2nd ed.. Chapman and Hall, London. 413

    Google Scholar 

  • Stern, R. J., 2002. Subduction Zones. Rev. Geophys., 40(4): 1012

    Article  Google Scholar 

  • Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth Planet. Sci. Lett., 226(3–4): 275–292

    Google Scholar 

  • Wyss, M., Hasegawa, A., Nakajima, J., 2001. Source and Path of Magma for Volcanoes in the Subduction Zone of Northeastern Japan. Geophys. Res. Lett., 28(9): 1819–1822

    Article  Google Scholar 

  • Zhao, D., 2001. Seismological Structure of Subduction Zones and Its Implications for Arc Magmatism and Dynamics. Phys. Earth Planet. Inter., 127(1–4): 197–214

    Article  Google Scholar 

  • Zhao, D., Mishra, O. P., Sanda, R., 2002. Influence of Fluids and Magma on Earthquakes: Seismological Evidence. Phys. Earth Planet. Inter., 132(4): 249–267

    Article  Google Scholar 

  • Zhao, D., Wang, Z., Umino, N., et al., 2009. Mapping the Mantle Wedge and Interpolate Thrust Zone of the Northeast Japan Arc. Tectonophysics, 467(1–4): 89–106

    Article  Google Scholar 

  • Zhu, G., Gerya, T. V., Yuen, D. A., et al., 2009. Three-Dimensional Dynamics of Hydrous Thermal-Chemical Plumes in Oceanic Subduction Zones. Geochem., Geophys., Geosyst., 10: Q11006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guizhi Zhu.

Additional information

This study was supported by the SNF (Nos. 200021-116381/1, 200020-126832/1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, G., Gerya, T. & Yuen, D.A. Melt evolution above a spontaneously retreating subducting slab in a three-dimensional model. J. Earth Sci. 22, 137–142 (2011). https://doi.org/10.1007/s12583-011-0165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0165-x

Key words

Navigation