Skip to main content
Log in

Theoretical and experimental analysis of liquid layer instability in hybrid rocket engines

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The combustion behavior of different hybrid rocket fuels has been analyzed in the frame of this research. Tests have been performed in a 2D slab burner configuration with windows on two sides. Four different liquefying paraffin-based fuels, hydroxyl terminated polybutadiene (HTPB) and high-density polyethylene (HDPE) have been tested in combination with gaseous oxygen (GOX). Experimental high-speed video data have been analyzed manually and with the proper orthogonal decomposition (POD) technique. Application of POD enables the recognition of the main structures of the flow field and the combustion flame appearing in the video data. These results include spatial and temporal analysis of the structures. For liquefying fuels these spatial values relate to the wavelengths associated to the Kelvin Helmholtz Instability (KHI). A theoretical long-wave solution of the KHI problem shows good agreement with the experimental results. Distinct frequencies found in the POD analysis can be related to the precombustion chamber configuration which can lead to vortex shedding phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. HTPB fuel sample gratefully provided by SPLab Milan.

  2. Note that the x and z image data arrays are transposed in the POD calculations.

Abbreviations

BM:

Bounded model: (I) Inviscid, (V) Viscous

CB:

Carbon black

DLR:

Deutsches Zentrum für Luft- und Raumfahrt e.V.

ESA:

European Space Agency

FPS:

Frames per second

GOX:

Gaseous oxygen

GR:

Growth rate

HDPE:

High-density polyethylene

HTPB:

Hydroxyl terminated polybutadiene

KHI:

Kelvin Helmholtz instability

NIPALS:

Nonlinear iterative partial least squares algorithm

POD:

Proper orthogonal decomposition

PSD:

Power spectral density

STERN:

Experimental rocket programme for German students

UBM:

Unbounded model: (I) Inviscid, (V) Viscous

\(A,B,C\) :

Constants for boundary conditions

\(G\) :

Mass flux

\(H, h\) :

Height

\(K_{0,1,2}\) :

Dispersion relation constants

\(k\) :

Wave number (\(2 \pi /\lambda\))

\(\dot{m}\) :

Mass flow

\(n\) :

Regression rate exponent

\(p\) :

Pressure

\(p_\mathrm{dyn}\) :

Dynamic pressure

\(\dot{r}\) :

Fuel regression rate

\(t\) :

Time

\(U\) :

Velocity

\(x,z\) :

Coordinates

\(\gamma\) :

Ratio of specific heats

\(\eta\) :

Dynamic viscosity

\(\lambda\) :

Wavelength

\(\mu\) :

Kinetic viscosity

\(\rho\) :

Density

\(\sigma\) :

Surface tension

\(\varphi\) :

Stream function

\(\omega\) :

Frequency

c:

Critical value

ent:

Entrainment

f:

Fuel

G:

Gas

I:

Imaginary part

L:

Liquid

m:

Most amplified value

R:

Real part

s:

Solid

vap:

Vaporization

References

  1. Adachi, M., Shimada, T.: Instability analysis of liquid films of liquefying hybrid rocket fuels under supercritical operating condition. In: 52nd Aerospace Sciences Meeting, AIAA 2014–0135. National Harbor, MD (2014)

  2. Arienti, M., Corn, M., Hagen, G.S., Madabhushi, R.K., Soteriou, M.C.: Proper orthogonal decomposition applied to liquid jet dynamics. In: 21st Annual Conference on Liquid Atomization and Spray Systems. Orlando (2008)

  3. Barato, F., Bellomo, N., Lazzarin, M., Moretto, F., Bettella, A., Pavarin, D.: Numerical modeling of paraffin-based fuels behavior. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2012–3750. Atlanta (2012)

  4. Bestehorn, M.: Hydrodynamik und Strukturbildung. Mit einer kurzen Einfnhrung in die Kontinuumsmechanik, Springer Lehrbuch (2006)

    Google Scholar 

  5. Bizon, K., Lombardi, S., Continillo, G., Mancaruso, E., Vaglieco, B.M.: Analysis of diesel engine combustion using imaging and independent component analysis. In: Proceedings of the Combustion Institute 34, 2921–2931 (2013)

  6. Carrick, P.G., Larson, C.W.: Lab scale test and evaluation of cryogenic solid hybrid rocket fuels. In: 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-95-2948. San Diego (1995)

  7. Chandler, A., Cantwell, B.J., Hubbard, G.S., Zilliac, G.: Visualization of the liquid layer combustion of paraffin fuel. In: 62nd International Astronautical Congress, IAC-11-C.4.2.8. Cape Town (2011)

  8. Chandler, A., Jens, E., Cantwell, B.J., Hubbard, G.S.: Visualization of the liquid layer combustion of paraffin fuel for hybrid rocket applications. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2012–3961. Atlanta (2012)

  9. DeLuca, L.T., Galfetti, L., Maggi, F., Colombo, G., Paravan, C., Reina, A., Tadini, P., Sossi, A., Duranti, E.: An optical time-resolved technique of solid fuels burning for hybrid rocket propulsion. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011–5753. San Diego (2011)

  10. DeRose, M.E., Pfeil, K.L., Carrick, P.G., Larson, C.W.: Tube burner studies of cryogenic solid combustion. In: 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-1997-3076. Seattle (1997)

  11. Dyer, J., Doran E. Dunn, Z., Lohner K. Bayart, C., Sadhwani, A., Zilliac, G., Cantwell, B., Karabeyoglu, M.A.: Design and development of a 100 km nitrous oxide/paraffin hybrid rocket vehicle. In: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2007-5362. Cincinnati (2007)

  12. Funada, T., Joseph, D.D.: Viscous potential flow analysis of kelvin-helmholtz instability in a channel. J Fluid Mech 445, 263–283 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gater, R.A., L’Ecuyer, M.R.L.: A fundamental investigation of the phenomena that characterize liquid film cooling. Int J Heat Mass Transfer 13(3), 1925–1939 (1970)

    Article  Google Scholar 

  14. Humble, R.W., Henry, G.N., Larson, W.J.: Space Propulsion Analysis Design, 1st edn. The McGraw-Hill Companies, Inc, New York (1995)

    Google Scholar 

  15. Karabeyoglu, M.A.: Transient combustion in hybrid rockets. Ph.D. thesis, Stanford University (1998)

  16. Karabeyoglu, M.A., Altman, D., Cantwell, B.J.: Combustion of liquefying hybrid propellants: Part 1, general theory. J Propulsion Power 18(3), 610–620 (2002)

    Article  Google Scholar 

  17. Karabeyoglu, M.A., Cantwell, B.J.: Combustion of liquefying hybrid propellants: Part 2, stability of liquid films. J Propulsion Power 18(3), 621–630 (2002)

    Article  Google Scholar 

  18. Karabeyoglu, M.A., Cantwell, B.J., Stevens, J.: Evaluation of homologous series of normal-alkanes as hybrid rocket fuels. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2005-3908. Tucson (2005)

  19. Karabeyoglu, M.A., Zilliac, G., Cantwell, B.J., DeZilwa, S., Castellucci, P.: Scale-up tests of high regression rate paraffin-based hybrid rocket fuels. J Propulsion Power 20(6), 1037–1045 (2004)

    Article  Google Scholar 

  20. Kobald, M., Ciezki, H., Schlechtriem, S.: Optical investigation of the combustion process in paraffin-based hybrid rocket fuels. In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2013–3894. San Jose (2013)

  21. Kobald, M., Schlechtriem, S.: Investigation of different hybrid rocket fuels in a 2d slab burner with optical techniques. In: Tenth International Conference on Flow Dynamics. Sendai, Japan (2013)

  22. Kobald, M., Schmierer, C., Ciezki, H., Schlechtriem, S., Toson, E., De Luca, L.T.: Evaluation of paraffin-based fuels for hybrid rocket engines. In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014–3646. Cleveland (2014)

  23. Kobald, M., Toson, E., Ciezki, H., Schlechtriem, S., Di Betta, S., Coppola, M., De Luca, L.T.: Rheological, optical and ballistic investigations of paraffin-based fuels for hybrid rocket propulsion using a 2d slab-burner. In: 5th European Conference for Aeronautics and Space Sciences. Munich, Germany (2013)

  24. Kontogeorgis, G.M., Tassios, D.P.: Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications. a critical review. Chem Eng J 66, 35–49 (1997)

    Article  Google Scholar 

  25. Kuo, K.K., Houim, R.W.: Theoretical modeling and numerical simulation challenges of combustion processes of hybrid rockets. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2011-5608. San Diego (2011)

  26. Lappoehn, K., Regenbrecht, D., Bergmann, D.: Stern a rocket programme for german students. In: 5th European Conference for Aeronautics and Space Sciences. Munich, Germany (2013)

  27. Larson, C.W., Pfeil, K.L., DeRose, M.E., Garrick, P.G.: High pressure combustion of cryogenic solid fuels for hybrid rockets. In: 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-1996-2594. Lake Buena Vista (1996)

  28. Marano, J.J., Holder, G.D.: General equation for correlating the thermophysical properties of n-paraffins, n-olefins, and other homologous series. 2. asymptotic behavior correlations for pvt properties. Ind Eng Chem Res 36(5), 1895–1907 (1997)

    Article  Google Scholar 

  29. Maruyama, S., Ishiguro, T., Shinohara, K., Nakagawa, I.: Study on mechanical characteristic of paraffin-based fuel. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2011-5678. San Diego (2011)

  30. Micheletti, D., Karabeyoglu, M.A.: Paraffin-based hybrid rocket testing at the butte aerotec facility. In: 62nd International Astronautical Congress, IAC-11-C.4.3.6. Cape Town, South Africa (2011)

  31. Nakagawa, I., Hikone, S.: Study on the regression rate of paraffin-based hybrid rocket fuels. J Propulsion Power 27(6), 1276–1279 (2011)

    Article  Google Scholar 

  32. Nigmatulin, R., Nigmatulin, B., Khodzaev, Y.A., Kroshilin, V.: Entrainment and deposition rates in a dispersed-film flow. Int J Multiphase Flow 22(1), 19–30 (1996)

    Article  MATH  Google Scholar 

  33. Pelletier, N.: Étude des phénomènes de combustion dans un propulseur hybride. modélisation et analyse expérimentale de la régression des combustibles liquéfiables. Ph.D. thesis, Institut Supérieur de L’Aéronatique et de L’Espace, Toulouse (2009)

  34. Ronningen, J.E., Husdal, J.: Development of a throttleable hybrid rocket engine for the spartan lander. In: Space Propulsion Conference. Cologne, Germany (2014)

  35. Thumann, A., Ciezki, H.K.: Combustion of Energetic Materials, chap. Comparison of PIV and Colour-Schlieren Measurements of the Combustion Process of Boron Particle Containing Solid Fuel Slabs in a rearward facing Step Combustor, pp. 742–752. Begell House Inc. (2002)

  36. Toson, E., Kobald, M., Di Betta, S., De Luca, L.T., Ciezki, H., Schlechtriem, S.: Rheological and ballistic investigations of paraffin-based fuels for hybrid rocket propulsion using a 2d radial micro-burner. In: 5th European Conference for Aeronautics and Space Sciences. Munich, Germany (2013)

  37. Verbene, O., Boiron, A.J., Vesteras, T.: Flpp large scale hybrid rocket demonstrator. In: Space Propulsion Conference. Cologne, Germany (2014)

  38. Verri, I.: Liquid film instability analysis in a hybrid rocket engine. Master’s thesis, Politecnico di Milano, Italy (2014)

  39. Zilliac, G., Waxman, B., Doran, E., Dyer, J., Karabeyoglu, M.A.: Peregrine hybrid rocket motor ground test results. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2012–4017. Atlanta (2012)

Download references

Acknowledgments

The authors would like to thank all the persons who supported the presented work in several manners. The cooperation of Prof. De Luca from SPLab in Milan and the exchange of master students, as well as the support of the M11 team at the DLR is greatly acknowledged. Further, we would like to thank Prof. Heislbetz for the helpful discussions and assistance with the KHI theory. Funding of the experiments was gratefully provided by internal resources for fundamental research of the DLR Lampoldshausen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Kobald.

Additional information

This paper is based on a presentation at the Space Propulsion Conference, May 19-22, 2014, Cologne, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobald, M., Verri, I. & Schlechtriem, S. Theoretical and experimental analysis of liquid layer instability in hybrid rocket engines. CEAS Space J 7, 11–22 (2015). https://doi.org/10.1007/s12567-015-0076-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-015-0076-2

Keywords

Navigation