Skip to main content
Log in

Radiative heat transfer analysis in modern rocket combustion chambers

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Radiative heat transfer is analyzed for subscale and fullscale rocket combustion chambers for H2/O2 and CH4/O2 combustion using the P1 radiation transport model in combination with various Weighted Sum of Gray Gases Models (WSGGMs). The influence of different wall emissivities, as well as the results using different WSGGMs, the size of the combustion chamber and the coupling of radiation and fluid dynamics, is investigated. Using rather simple WSGGMs for homogeneous systems yields similar results as using sophisticated models. With models for nonhomogeneous systems the radiative wall heat flux (RWHF) decreases by 25–30 % for H2/O2 combustion and by almost 50 % for CH4/O2 combustion. Enlarging the volume of the combustion chamber increases the RWHF. The influence of radiation on the flow field is found to be negligible. The local ratio of RWHF to total wall heat flux shows a maximum of 9–10 % for H2/O2 and 8 % for CH4/O2 combustion. The integrated heat load ratio is around 3 % for H2/O2 and 2.5 % for CH4/O2 combustion. With WSGGMs for nonhomogeneous systems, the local ratio decreases to 5 % (H2/O2) and 3 % (CH4/O2) while the integrated ratio is only 2 % (H2/O2) and 1.3 % (CH4/O2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

CWHF:

Convective wall heat flux

NSMB:

Navier–Stokes multiblock

RTE:

Radiative transfer equation

RWHF:

Radiative wall heat flux

SSME:

Space shuttle main engine

TWHF:

Total wall heat flux

WSGGM:

Weighted Sum of Gray Gases Model

a :

Absorption coefficient

C :

Absorption cross section

\(\bar{C}\) :

Mean absorption cross section

f :

Mixture fraction

e :

Radiation energy

F :

Blackbody distribution function

G :

Incident radiation

h q :

Reduced enthalpy

h :

Planck’s constant

i :

Radiation intensity

I :

Number of gray gases

n :

Refractive index

\(\vec{n}\) :

Normal vector

N :

Number density

q :

Heat flux

r :

Function of mixture

s :

Direction

S :

Path length

T :

Temperature

w :

Blackbody weight of gray gas

Γ:

Goulard number

ε :

Emissivity

\(\phi\) :

Scattering phase function

λ :

Wavelength

\(\rho\) :

Density

σ :

Scattering coefficient, Stefan–Boltzmann constant

ω :

Solid angle

b:

Blackbody property

c:

Carbon dioxide

i:

Index of gray gas, Numeration index

j:

Numeration index

mix:

Mixture

min:

Minimum

max:

Maximum

w:

Water vapor

λ :

Spectral value

∞:

Freestream value

References

  1. Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. ASME J. Heat Transf. 104, 602–608 (1982)

    Article  Google Scholar 

  2. Coppalle, A.: The total emissivities of high temperature flames. Combust. Flame 49, 101–108 (1983)

    Article  Google Scholar 

  3. Denison, M.K., Webb, B.W.: An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 50, 499–510 (1993)

    Article  Google Scholar 

  4. Johansson, R.: Account for ratios of H2O to CO2 in the calculation of thermal radiation of gases with the weighted-sum-of-grey-gases model. In: Proceedings of the Sixth Mediterranean Combustion Symposium (2009)

  5. Denison, M.K., Webb, B.W.: The spectral line-based weighted-sum-of-gray-gases model in nonisothermal nonhomogeneous media. J. Heat Transf., ASME 117(2), 359–365 (1995)

    Google Scholar 

  6. Vos, J.B., Rizzi, A.W., Corjon, A., Chaput, E., Soinne, E.: Recent advances in aerodynamics inside the NSMB (Navier Stokes multi block) consortium, Aerospace Sciences Meeting and Exhibit, 36th, Reno (1998)

  7. Göbel, F., Mundt, Ch.: Implementation of the P1 radiation model in the CFD solver NSMB and investigation of radiative heat transfer in the SSME main combustion chamber, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (2011)

  8. Naraghi, M.H., Dunn, S., Coats, D.: Modeling of Radiation Heat Transfer in Liquid Rocket Engines, AIAA-2005-3935, Joint Propulsion Conference, Arizona (2005)

  9. Wang, T.-S.: Unified Navier–Stokes flowfield and performance analysis of liquid rocket engines. J. Propuls. Power 9(5), 678–685 (1993)

    Google Scholar 

  10. Thellmann, A.: Impact of Gas Radiation on Viscous Flows, in Particular on Wall Heat Loads, in Hydrogen–Oxygen vs. Methane–Oxygen Systems, Based on the SSME Main Combustion Chamber. Universität der Bundeswehr München, Ph.D. thesis, Institute of Thermodynamics (2010)

  11. Göbel, F., Birgel, D., Thellmann, A.: CFD Simulation of Hydrogen–Oxygen and Methane–Oxygen System for Space Shuttle Main Combustion Chamber including Radiative Effects. 60th International Astronautical Congress (2009)

  12. Göbel, F., Mundt, Ch.: CFD Analysis of Radiative Heat Transfer in the SSME Main Combustion Chamber using Advanced Spectral Models, 7th European Symposium on Aerothermodynamics for Space Vehicles (2011)

  13. Frey, M., Aichner, Th., Görgen, J., Ivancic, B., Kniesner, B., Knab, O.: Modeling of Rocket Combustion Devices, 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Chicago, IL (2010)

  14. Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. McGraw-Hill, Tokyo (1972)

    Google Scholar 

  15. Capra, B.R.: Aerothermodynamic Simulation of Subscale Models of the FIRE II and Titan Explorer vehicles in Expansion Tubes, Ph.D. thesis, University of Queensland (2007)

  16. Modest, M.F.: Radiative Heat Transfer, 2nd edn. Academic Press, San Diego, London, Burlington (2003)

    Google Scholar 

  17. Göbel, F.: Implementation of Spectral Models for Gas Radiation into the CFD Solver NSMB and Validation on the basis of the SSME Main Combustion Chamber. Deutscher Luft- und Raumfahrtkongress, DLRK 2010-1357, Hamburg (2010)

  18. Denison, M.K., Webb, B.W.: An absorption line blackbody distribution function for efficient calculation of total gas radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 50(5), 499–510 (1993)

    Article  Google Scholar 

  19. Denison, M.K., Webb, B.W.: The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. J. Heat Transf. 117(3), 788–792 (1995)

    Article  Google Scholar 

  20. Görgen, J., Aichner, Th, Frey, M.: Spray Combustion and Heat Transfer Modelling in LOX/H2, LOX/HC and MMH/NTO Combustion chambers, 3rd edn. European conference for Aerospace Sciences (EUCASS), Versailles (2009)

    Google Scholar 

  21. McBride, B.J., Gordon, S.: Computer Program for Calculating and Fitting Thermodynamic Functions, NASA RP-1271 (1992)

  22. GASPAK, Software Package, Cryodata Inc. http://www.htess.com/gaspak.htm [cited January, 6th 2014]

  23. Göhring, M.: Numerische Simulation der ungekoppelten Gasstrahlung in modernen H2/O2 Raketenbrennkammern, Master’s thesis, Institute of Thermodynamics, Universität der Bundeswehr München (2011)

  24. Touloukian, Y.S.: Thermophysical Properties of Matter, vol. 7. Thermal Radiative Properties, Metallic Elements and Alloys, New York (1970)

    Google Scholar 

  25. Kniesner, B., Frey, M., Knab, O.: Numerical Investigation of Gas Generator and Preburner Flows for Rocket Engine Applications, 4th European Conference for Aerospace Sciences (EUCASS). St. Petersburg, Russia (2011)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support by Martin Göhring and Matthias Thoma who did most of the radiative transfer simulations as part of their Master’s theses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Goebel.

Additional information

This is an extended version of the paper published at the 5th European Conference for AeroSpace Sciences in 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goebel, F., Kniesner, B., Frey, M. et al. Radiative heat transfer analysis in modern rocket combustion chambers. CEAS Space J 6, 79–98 (2014). https://doi.org/10.1007/s12567-014-0060-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-014-0060-2

Keywords

Navigation