Skip to main content
Log in

Human outposts on Mars: engineering and scientific lessons learned from history

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

There are several planned projects that aim to send humans to Mars which are currently developed by the ESA, the NASA or by initiatives from the private sector (e.g. The Mars One Project). Some of these projects include long-term stays or even permanent human outposts on the red planet. To achieve the necessary habitats on Mars, a vast amount of different engineering and scientific problems has to be solved. This paper identifies some of the most important issues by analyzing a similar endeavor from human history—the colonization of the American continent by the Europeans. This might seem to be an unconventional approach, but some valuable insights can be gathered by studying the significant dangers and drawbacks experienced by the early settlers in America. These historical records can help scientists and engineers to set up some guidelines for avoiding some of the risks for the first human beings on Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama, Y., Inatani, Y.: Construction of sustainable mars logistics system and feasibility assessment. Trans. Jpn. Soc. Aeronaut. Space Sci. 56(4), 215–222 (2013)

    Article  Google Scholar 

  2. Bell, L., Hines, G.D.: Mars habitat modules: launch, scaling and functional design considerations. Acta Astron. 57(1), 48–58 (2005)

    Article  Google Scholar 

  3. Hublitz, I., Henninger, D.L., Drake, B.G., Eckart, P.: Engineering concepts for inflatable mars surface greenhouses. Adv. Space Res. 34(7), 1546–1551 (2004). Space life sciences: life support systems and biological systems under influence of physical factors

    Article  Google Scholar 

  4. Burleigh, S., Cerf, V., Durst, R., Fall, K., Hooke, A., Scott, K., Weiss, H.: The interplanetary internet: a communications infrastructure for mars exploration. Acta Astron. 53(7), 365–373 (2003). The New Face of Space Selected Proceedings of the 53rd International Astronautical Federation Congress

    Article  Google Scholar 

  5. De Paula, R.P., Edwards Jr, C.D., Flamini, E.: Evolution of the communications systems and technology for mars exploration. Acta Astron. 51(9), 207–212 (2002)

    Article  Google Scholar 

  6. Nelson, M., Alling, A., Dempster, W.F., van Thillo, M., Allen, J.: Advantages of using subsurface flow constructed wetlands for wastewater treatment in space applications: Ground-based mars base prototype. Adv. Space Res. 31(7), 1799–1804 (2003)

    Article  Google Scholar 

  7. Gitelson, J.I., Bartsev, S.I., Mezhevikin, V.V., Okhonin, V.A.: An alternative approach to solar system exploration providing safety of human mission to mars. Adv. Space Res. 31(1), 17–24 (2003)

    Article  Google Scholar 

  8. White, R.J., Bassingthwaighte, J.B., Charles, J.B., Kushmerick, M.J., Newman, D.J.: Issues of exploration: human health and wellbeing during a mission to mars. Adv. Space Res. 31(1), 7–16 (2003)

    Article  Google Scholar 

  9. Hurtak, J.J.: Legislation and space law concepts proposed for the eventual industrialization of Mars by man. Univelt, San Diego (1999)

    Google Scholar 

  10. Basner, M., et al.: Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. PNAS. 110(7), 2635–2640 (2013)

    Article  Google Scholar 

  11. Suedfeld, Peter: Historical space psychology: early terrestrial explorations as mars analogues. Planet Space Sci. 58(4), 639–645 (2010)

    Article  Google Scholar 

  12. Kupperman, K.O.: Apathy and death in early Jamestown. J. Am. Hist. 66, 24–40 (1979)

    Article  Google Scholar 

  13. Vaughan, A.T.: American Genesis: Captain John Smith and the Founding of Virginia. The library of American biography, Harper Collins (1997)

    Google Scholar 

  14. Tuomisto, H.L., de Mattos, M.J.T.: Environmental impacts of cultured meat production. Environ. Sci. Technol. 45(14), 6117–6123 (2011)

    Article  Google Scholar 

  15. Park, J.B.K., Craggs, R.J., Shilton, A.N.: Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102(1), 35–42 (2011). Special issue: Biofuels-II: algal biofuels and microbial fuel cells

    Article  Google Scholar 

  16. Stroemme, Maria, Mihranyan, Albert, Ek, Ragnar: What to do with all these algae? Mat. Let. 57(3), 569–572 (2002)

    Article  Google Scholar 

  17. Paul, W., Sharma, C.P.: Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 18(1), 18–23 (2004)

    Google Scholar 

  18. Krauss, Robert W.: Mass culture of algae for food and other organic compounds. Am. J. Bot. 49(4), 425–435 (1962)

    Article  Google Scholar 

  19. Shimamatsu, Hidenori: Mass production of spirulina, an edible microalga. Hydrobiologia 512(1–3), 39–44 (2004)

    Article  Google Scholar 

  20. Olsson-Francis, Karen, Cockell, Charles S.: Use of cyanobacteria for in situ resource use in space applications. Planet Space Sci. 58(10), 1279–1285 (2010)

    Article  Google Scholar 

  21. Price, A.L., Thomas, D.J., Sullivan, S.L., Zimmerman, S.M.: Common freshwater cyanobacteria grow in 100% co2. Astrobiology 5, 66–74 (2005)

    Article  Google Scholar 

  22. Lehto, K.M., Lehto, H.J., Kanervo, E.A.: Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Res. Microbiol. 157(1), 69–76 (2006). Space Microbiology

    Article  Google Scholar 

  23. Percy, G., Quinn, D.B.: Observations gathered out of a discourse of the plantation of the southern colony in virginia by the english, 1606. Association for the Preservation of Virginia Antiquities, 1967

  24. Nicholson, W.L., Krivushin, K., Gilichinsky, D., Schuerger, A.C.: Growth of carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for earth microbes on mars. Proc. Natl. Acad. Sci. USA. 110(2), 666–671 (2013)

    Article  Google Scholar 

  25. Kong, M.G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., van Dijk, J., Zimmermann, J.L.: Plasma medicine: an introductory review. New J. Phys. 11(11), 115012 (2009)

    Article  Google Scholar 

  26. Park, G.Y., Park, S.J., Choi, M.Y., Koo, I.G., Byun, J.H., Hong, J.W., Sim, J.Y., Collins, G.J., Lee, J.K.: Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 21(4), 043001 (2012)

    Article  Google Scholar 

  27. Lee, J.K., Kim, Byun, J.H., Kim, K.T., Kim, G.C., Park, G.Y.: Biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Jpn. J. Appl. Phys. 50(8), 08JF01 (2011)

    Article  Google Scholar 

  28. Huang, J., Chen, W., Li, H., Wang, X.-Q., Lv, G.-H., Khohsa, M.L., Guo, M., Feng, K.-C., Wang, P.-Y., Yang, S.-Z.: Deactivation of a549 cancer cells in vitro by a dielectric barrier discharge plasma needle. J. Appl. Phys. 109(5), 053305–053306 (2011)

    Article  Google Scholar 

  29. Heberlein, J., Murphy, A.B.: Thermal plasma waste treatment. J. Phys. D. Appl. Phys. 41(5), 053001 (2008)

    Article  Google Scholar 

  30. Locke, B.R., Sato, M., Sunka, P., Hoffmann, M.R., Chang, J.-S.: Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 45(3), 882–905 (2006)

    Article  Google Scholar 

  31. Gomez, E., Rani, D.A., Cheeseman, C.R., Deegan, D., Wise, M., Boccaccini, A.R.: Thermal plasma technology for the treatment of wastes: A critical review. J. Hazard. Mater. 161(2–3), 614–626 (2009)

    Article  Google Scholar 

  32. Khuantrairong, T., Traichaiyaporn, S.: The nutritional value of edible freshwater alga cladophora sp. (chlorophyta) grown under different phosphorus concentrations. Int. J. Agr. Biol. 13, 297–300 (2011)

    Google Scholar 

  33. Dawczynski, C., Schäfer, U., Leiterer, M., Jahreis, G.: Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J. Agric. Food Chem. 55(25), 10470–10475 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gruenwald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruenwald, J. Human outposts on Mars: engineering and scientific lessons learned from history. CEAS Space J 6, 73–77 (2014). https://doi.org/10.1007/s12567-014-0059-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-014-0059-8

Keywords

Navigation