Skip to main content
Log in

Morphology of mouse seminiferous tubules

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

We developed a technique to analyze the high-resolution three-dimensional (3D) structure of seminiferous tubules. It consists of segmentation of tubules in serial paraffin sections of the testis by marking the basement membrane with periodic acid–Schiff or a fluorescent anti-laminin antibody followed by 3D reconstruction of tubules with high-performance software. Using this method, we analyzed testes from mice at different ages and accurately elucidated the 3D structure of seminiferous tubules, including the number and length of tubules as well as the numbers of connections with the rete testis, branching points, and blind ends. We also developed a technique to identify the precise spermatogenic stage and cellular composition of the seminiferous epithelium. It consists of the combination of lectin histochemistry for acrosomes and immunohistochemistry for specific cell markers visualized with fluorescence. Using this method, we examined seminiferous tubules from normal mice and counted the number of each cell type at each stage, and thereby established a quantitative standard for the cellular composition of the seminiferous epithelium. We then investigated seminiferous epithelia from genetically modified infertile mice deficient in certain cell adhesion molecules and revealed characteristic abnormalities in the cellular composition. We also analyzed the distribution and direction of spermatogenic waves along the length of adult seminiferous tubules as well as the site of the first onset of spermatogenesis in postnatal seminiferous tubules. These methods will be useful for investigating the structure and function of seminiferous tubules in mice and humans under normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abercronbie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  Google Scholar 

  • Agrimson KS, Onken J, Mitchell D, Topping TB, Chiarini-Garcia H, Hogarth CA, Griswold MD (2016) Characterizing the spermatogonial response to retinoic acid during the onset of Spermatogenesis and following synchronization in the neonatal mouse testis. Biol Reprod 95:1–15

    Article  CAS  Google Scholar 

  • Ahmed EA, de Rooij DG (2009) Staging of mouse seminiferous tubule cross-sections. Methods Mol Biol 558:263–277

    Article  PubMed  Google Scholar 

  • Allen BM (1904) The embryonic development of the ovary and testis of the mammals. Am J Anat 3:89–154

    Article  Google Scholar 

  • Bremer JL (1911) Morphology of the tubules of the human testis and epididymis. Am J Anat 11:393–417

    Article  Google Scholar 

  • Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36:647–652

    Article  CAS  PubMed  Google Scholar 

  • Christensen AK (1975) Leydig cells. In: Hamilton DW, Greep RO (eds) Handbook of physiology, vol 5. Male reproductive system. American Physiological Society, Washington DC, pp 57–94

    Google Scholar 

  • Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–236

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Harvey SC (1965) Duration of the cycle of the seminiferous epithelium of normal, hypophysectomized and hypophysectomized-hormone treated albino rats. Endocrinology 76:80–89

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Huckins C (1961) Microscopic anatomy of the sex cords and seminiferous tubules in growing and adult male albino rats. Am J Anat 108:79–97

    Article  Google Scholar 

  • Clermont Y, Oko R, Hermo L (1993) Cell biology of mammalian spermiogenesis. In: Desjardin C, Ewing LL (eds) Cell and molecular biology of the testis. Oxford University Press, New York/Oxford, pp 332–376

    Google Scholar 

  • Combes AN, Lesieur E, Harley VR, Sinclair AH, Little MH, Wilhelm D, Koopman P (2009) Three-dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Dev Dyn 238:1033–1041

    Article  PubMed  PubMed Central  Google Scholar 

  • Courot M, Hochereau-de-Reviers MT, Ortavant R (1970) Spermatogenesis. In: Johnson AD, Gomes WR, VanDemark NL (eds) The testis 1. Academic, New York, pp 339–432

    Google Scholar 

  • Curtis GM (1918) The morphology of the mammalian seminiferous tubule. Am J Anat 24:339–394

    Article  Google Scholar 

  • Davis JR, Langford GA, Kirby PJ (1970) The testicular capsule. In: Johnson AD, Gomes WR, VanDemark NL (eds) The testis 1. Academic, New York, pp 281–337

    Google Scholar 

  • De Kretser DM, Kerr JB (1988) The cytology of the testis. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven, New York, pp 837–932

    Google Scholar 

  • DeFalco T, Potter SJ, Williams AV, Waller B, Kan MJ, Capel B (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drumond AL, Meistrich ML, Chiarini-Garcia H (2011) Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach. Reproduction 142:145–155

    Article  CAS  PubMed  Google Scholar 

  • Fawcett DW, Neaves WB, Flores MN (1973) Comparative observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol Reprod 9:500–532

    Article  CAS  PubMed  Google Scholar 

  • Felix W (1912) The development of the urinogenital organs. In: Keibel F, Mall FP (eds) Manual of human embryology II. JB Lippincott, Philadelphia, pp 752–979

    Google Scholar 

  • Gardner PJ (1966) Fine structure of the seminiferous tubule of the Swiss mouse. The spermatid. Anat Rec 155:235–249

    Article  CAS  PubMed  Google Scholar 

  • Gardner PJ, Holyoke EA (1964) Fine structure of the seminiferous tubule of the Swiss mouse. I. The limiting membrane, Sertoli cell, spermatogonia, and spermatocytes. Anat Rec 150:391–404

    Article  CAS  PubMed  Google Scholar 

  • Hess RA, Franca LR (2005) Structure of the Sertoli cell. In: Griswold M, Skinner M (eds) Sertoli cell biology. Academic, New York, pp 19–40

    Chapter  Google Scholar 

  • Hess RA, Franca LR (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15

    PubMed  Google Scholar 

  • Huber GC, Curtis GM (1913) The morphology of the seminiferous tubules of mammalia. Anat Rec 7:207–219

    Article  Google Scholar 

  • Hume DA, Halpin D, Charlton H, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci USA 81:4174–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikami K, Tokue M, Sugimoto R, Noda C, Kobayashi S, Hara K, Yoshida S (2015) Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development 142:1582–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai T, Kawai Y, Tadokoro Y, Yamamoto M, Nishimune Y, Yomogida K (2004) In vivo and in vitro constant expression of GATA-4 in mouse postnatal Sertoli cells. Mol Cell Endocrinol 214:107–115

    Article  CAS  PubMed  Google Scholar 

  • Kluin PM, de Rooij DG (1981) A comparison between the morphology and cell kinetics of gonocytes and adult type undifferentiated spermatogonia in the mouse. Int J Androl 4:475–493

    Article  CAS  PubMed  Google Scholar 

  • Lammers JH, Offenberg HH, van Aalderen M, Vink AC, Dietrich AJ, Heyting C (1994) The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol Cell Biol 14:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblond CP, Clermont Y (1952a) Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci 55:548–573

    Article  CAS  PubMed  Google Scholar 

  • Leblond CP, Clermont Y (1952b) Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the “periodic acid-fuchsin sulfurous acid” technique. Am J Anat 90:167–215

    Article  CAS  PubMed  Google Scholar 

  • Leeson TS, Cookson FB (1974) The mammalian testicular capsule and its muscle elements. J Morphol 144:237–253

    Article  PubMed  Google Scholar 

  • Meistrich ML, Hess RA (2013) Assessment of spermatogenesis through staging of seminiferous tubules. Methods Mol Biol 927:299–307

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Christensen AK (1980) Morphometric analysis of Leydig cells in the normal rat testis. J Cell Biol 84:340–354

    Article  CAS  PubMed  Google Scholar 

  • Nakata H, Wakayama T, Sonomura T, Honma S, Hatta T, Iseki S (2015a) Three-dimensional structure of seminiferous tubules in the adult mouse. J Anat 227:686–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata H, Wakayama T, Takai Y, Iseki S (2015b) Quantitative analysis of the cellular composition in seminiferous tubules in normal and genetically modified infertile mice. J Histochem Cytochem 63:99–113

    Article  CAS  PubMed  Google Scholar 

  • Nakata H, Sonomura T, Iseki S (2017a) Three-dimensional analysis of seminiferous tubules and spermatogenic waves in mice. Reproduction 154:569–579

    Article  CAS  PubMed  Google Scholar 

  • Nakata H, Wakayama T, Asano T, Nishiuchi T, Iseki S (2017b) Identification of sperm equatorial segment protein 1 in the acrosome as the primary binding target of peanut agglutinin (PNA) in the mouse testis. Histochem Cell Biol 147:27–38

    Article  CAS  PubMed  Google Scholar 

  • Nel-Themaat L, Vadakkan TJ, Wang Y, Dickinson ME, Akiyama H, Behringer RR (2009) Morphometric analysis of testis cord formation in Sox9-EGFP mice. Dev Dyn 238:1100–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakberg EF (1956a) A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat 99:391–413

    Article  CAS  PubMed  Google Scholar 

  • Oakberg EF (1956b) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 99:507–516

    Article  CAS  PubMed  Google Scholar 

  • Perey B, Clermont Y, Leblond CP (1961) The wave of the seminiferous epithelium in the rat. Am J Anat 108:47–77

    Article  Google Scholar 

  • Roosen-Runge EC (1962) The process of spermatogenesis in mammals. Biol Rev Camb Philos Soc 37:343–377

    Article  CAS  PubMed  Google Scholar 

  • Roosen-Runge EC, Giesel LO (1950) Quantitative studies on spermatogenesis in the albino rat. Am J Anat 87:1–30

    Article  CAS  PubMed  Google Scholar 

  • Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River, Vienna

    Google Scholar 

  • Silván U, Aréchaga J (2012) Anatomical basis for cell transplantation into mouse seminiferous tubules. Reproduction 144:385–392

    Article  CAS  PubMed  Google Scholar 

  • Steinberger E, Steinberger A (1975) Spermatogenic function of the testis. In: Greep RO, Hamilton DW (eds) Male reproductive system. American Physiological Society, Washington, pp 1–10 (Handbook of Physiology, Section 7: Endocrinology, Vol. 5)

    Google Scholar 

  • Torrey TW (1945) The development of the urinogenital system of the albino rat. II. The gonads. Am J Anat 76:375–397

    Article  Google Scholar 

  • Wakayama T, Nakata H, Kumchantuek T, Gewaily MS, Iseki S (2015) Identification of 5-bromo-2′-deoxyuridine-labeled cells during mouse spermatogenesis by heat-induced antigen retrieval in lectin staining and immunohistochemistry. J Histochem Cytochem 63:190–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to Prof. Shoichi Iseki (Kanazawa University, Komatsu University) for his constant encouragement of and contribution to this work. This work was supported by MEXT KAKENHI grant no. JP16K18976, and the Takeda Science Foundation, Ichiro Kanehara Foundation, and Sumitomo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Nakata.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakata, H. Morphology of mouse seminiferous tubules. Anat Sci Int 94, 1–10 (2019). https://doi.org/10.1007/s12565-018-0455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-018-0455-9

Keywords

Navigation