Skip to main content
Log in

A new drifting underwater camera system for observing spawning Japanese eels in the epipelagic zone along the West Mariana Ridge

  • Original Article
  • Fisheries
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Spawning-condition Japanese eels Anguilla japonica, fertilized eggs, and newly-hatched preleptocephali have been captured, and studies for observing spawning eels with underwater camera systems have begun. This study describes a new, less invasive, free-drifting underwater camera observation system that was deployed from the research vessel (R/V) Natsushima in June 2013. Three drifting buoy camera systems (Una-Cam) with lights-on/lights-off programmed sequencing during daytime and nighttime hours were deployed over a period of seven days at 20 locations south of a salinity front along the southern West Mariana Ridge. Live artificially matured A. japonica eels held in transparent chambers were used as an attractant source through the release of reproductive pheromones and other odors. Each system was suspended from a buoy array at a depth of 174–200 m, with four cameras and three lights pointed downward at different angles towards the eel chamber. The Una-Cam systems were stable and were effective at recording images of fish, crustaceans, and gelatinous zooplankton. Olfactory cues may have attracted male and female Derichthys serpentinus eels, which showed what seemed to be reproductive behavior and attraction to the Japanese eels in the chamber. Una-Cam systems are capable of recording images of anguillid eels, if they approach, and may be useful for observing spawning eels in their offshore spawning areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsukamoto K (1992) Discovery of the spawning area for the Japanese eel. Nature 356:789–791

    Article  Google Scholar 

  2. Kimura S, Tsukamoto K, Sugimoto T (1994) A model for the larval migration of the Japanese eel: roles of the trade winds and salinity front. Mar Biol 119:185–190

    Article  Google Scholar 

  3. Kimura S, Doos K, Coward AC (1999) Numerical simulation to resolve the issue of downstream migration of the Japanese eel. Mar Ecol Prog Ser 186:303–306

    Article  Google Scholar 

  4. Fricke H, Tsukamoto K (1998) Seamounts and the mystery of eel spawning. Naturwissenschaften 85:290–291

    Article  CAS  Google Scholar 

  5. Tsukamoto K, Otake T, Mochioka N, Lee TW, Fricke H, Inagaki T, Aoyama J, Ishikawa S, Kimura S, Miller MJ, Hasumoto H, Oya M, Suzuki Y (2003) Seamounts, new moon and eel spawning: the search for the spawning site of the Japanese eel. Environ Biol Fish 66:221–229

    Article  Google Scholar 

  6. Tsukamoto K (2006) Spawning of eels near a seamount. Nature 439:929

    Article  CAS  PubMed  Google Scholar 

  7. Tsukamoto K, Chow S, Otake T, Kurogi H, Mochioka N, Miller MJ, Aoyama J, Kimura S, Watanabe S, Yoshinaga T, Shinoda A, Kuroki M, Oya M, Watanabe T, Hata K, Ijiri S, Kazeto Y, Nomura K, Tanaka H (2011) Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat Commun 2:179. doi:10.1038/ncomms1174

    Article  PubMed Central  PubMed  Google Scholar 

  8. Aoyama J, Watanabe S, Miller MJ, Mochioka N, Otake T, Yoshinaga T, Tsukamoto K (2014) Spawning sites of the Japanese eel in relation to oceanographic structure and the West Mariana Ridge. PLoS One 9(2):e88759

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kuroki M, Aoyama J, Miller MJ, Yoshinaga T, Shinoda A, Hagihara S, Tsukamoto K (2009) Sympatric spawning of Anguilla marmorata and Anguilla japonica in the western North Pacific Ocean. J Fish Biol 78:1853–1865

    Article  Google Scholar 

  10. Chow S, Kurogi H, Mochioka N, Kaji S, Okazaki M, Tsukamoto K (2009) Discovery of mature freshwater eels in the open ocean. Fish Sci 75:257–259

    Article  CAS  Google Scholar 

  11. Kurogi H, Okazaki M, Mochioka N, Jinbo T, Hashimoto H, Takahashi M, Tawa A, Aoyama J, Shinoda A, Tsukamoto K, Tanaka H, Gen K, Kazeto Y, Chow S (2011) First capture of post-spawning female of the Japanese eel Anguilla japonica at the southern West Mariana Ridge. Fish Sci 77:199–205

    Article  CAS  Google Scholar 

  12. Ishikawa S, Suzuki K, Inagaki T, Watanabe S, Kimura Y, Okamura A, Otake T, Mochioka N, Suzuki Y, Hasumoto H, Oya M, Miller MJ, Lee TW, Fricke H, Tsukamoto K (2001) Spawning time and place of the Japanese eel, Anguilla japonica, in the North Equatorial Current of the western North Pacific Ocean. Fish Sci 67:1097–1103

    Article  Google Scholar 

  13. Schmidt J (1922) The breeding places of the eel. Philos Trans R Soc 211:179–208

    Article  Google Scholar 

  14. Schoth M, Tesch F-W (1982) Spatial distribution of 0-group eel larvae (Anguilla sp.) in the Sargasso Sea. Helgoländer Meeresunters 35:309–320

    Article  Google Scholar 

  15. Kleckner RC, McCleave JD (1988) The northern limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal fronts and surface water masses. J Mar Res 46:647–667

    Article  Google Scholar 

  16. Munk P, Hansen MM, Maes GE, Nielsen TG, Castonguay M, Riemann L, Sparholt H, Als TD, Aarestrup K, Andersen NG, Bachler M (2010) Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. Proc Roy Soc Lond B Biol Sci 277:3593–3599

    Article  Google Scholar 

  17. Shinoda A, Aoyama J, Miller MJ, Otake T, Mochioka N, Watanabe S, Minegishi Y, Kuroki M, Yoshinaga T, Yokouchi K, Fukuda N, Sudo R, Hagihara S, Zenimoto K, Suzuki Y, Oya M, Inagaki T, Kimura S, Fukui A, Lee TW, Tsukamoto K (2011) Evaluation of the larval distribution and migration of the Japanese eel in the western North Pacific. Rev Fish Biol Fish 21:591–611

    Article  Google Scholar 

  18. Kimura S, Tsukamoto K (2006) The salinity front in the North Equatorial Current: a landmark for the spawning migration of the Japanese eel (Anguilla japonica) related to the stock recruitment. Deep Sea Res II 53:315–325

    Article  Google Scholar 

  19. Tsukamoto K (2009) Oceanic migration and spawning of anguillid eels. J Fish Biol 74:1833–1852

    Article  CAS  PubMed  Google Scholar 

  20. Tsukamoto K, Mochioka N, Miller MJ, Koyama S, Watanabe S, Aoyama J (2013) Video observation of an eel in the Anguilla japonica spawning area along the West Mariana Ridge. Fish Sci 79:407–416

    Article  CAS  Google Scholar 

  21. Fernandes PG, Stevenson P, Brierley AS, Armstrong F, Simmonds EJ (2003) Autonomous underwater vehicles: future platforms for fisheries acoustics. ICES J Mar Sci 60:684–691

    Article  Google Scholar 

  22. Lindsay DJ, Hunt JC (2005) Biodiversity in midwater cnidarians and ctenophores: submersible-based results from deep-water bays in the Japan Sea and North-western Pacific. J Mar Biol Assoc UK 85:503–517

    Article  Google Scholar 

  23. Stoner AW, Ryer CH, Parker SJ, Auster PJ, Wakefield WW (2008) Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can J Fish Aquat Sci 65:1230–1243

    Article  Google Scholar 

  24. Gartner JV Jr, Sulak KJ, Ross SW, Necaise AM (2008) Persistent near-bottom aggregations of mesopelagic animals along the North Carolina and Virginia continental slopes. Mar Biol 153:825–841

    Article  Google Scholar 

  25. Edinger EN, Sherwood OA, Piper DJW, Wareham VE, Baker KD, Gilkinson KD, Scott DB (2011) Geological features supporting deep-sea coral habitat in Atlantic Canada. Cont Shelf Res 31:S69–S84

    Article  Google Scholar 

  26. Robison BH (1999) Shape change behavior by mesopelagic animals. Mar Freshw Behav Physiol 32:17–25

    Article  Google Scholar 

  27. Drazen JC, Robison BH (2004) Direct observations of the association between a deep-sea fish and a giant scyphomedusa. Mar Freshwat Behav Physiol 37:209–214

    Article  Google Scholar 

  28. Lorance P, Trenkel VM (2006) Variability in natural behaviour, and observed reactions to an ROV, by mid-slope fish species. J Exp Mar Biol Ecol 332:106–119

    Article  Google Scholar 

  29. Luck DG, Pietsch TW (2008) In-situ observations of a deep-sea ceratioid anglerfish of the genus Oneirodes (Lophiiformes: Oneirodidae). Copeia 2008:446–451

    Article  Google Scholar 

  30. Benfield MC, Caruso JH, Sulak KJ (2009) In situ video observations of two manefishes (Perciformes: Caristiidae) in the mesopelagic zone of the northern Gulf of Mexico. Copeia 2009:637–641

    Article  Google Scholar 

  31. Holles S, Simpson SD, Radford AN, Berten L, Lecchini D (2013) Boat noise disrupts orientation behavior in a coral reef fish. Mar Ecol Prog Ser 485:295–300

    Article  Google Scholar 

  32. Miller MJ, Koyama S, Mochioka N, Aoyama J, Watanabe S, Tsukamoto K (2014) Vertical body orientation by a snipe eel (Nemichthyidae, Anguilliformes) in the deep mesopelagic zone along the West Mariana Ridge. Mar Freshwat Behav Physiol. 47:265–272

    Article  Google Scholar 

  33. Kimura S, Inoue T, Sugimoto T (2001) Fluctuation in the distribution of low-salinity water in the North Equatorial Current and its effect on the larval transport of the Japanese eel. Fish Oceanogr 10:51–60

    Article  Google Scholar 

  34. Kodama T, Kurogi H, Okazaki M, Jinbo T, Chow S, Tomoda T, Ichikawa T, Watanabe T (2014) Vertical distribution of transport exopolymer particle (TEP) concentration in the oligotrophic western tropical North Pacific. Mar Ecol Prog Ser. doi:10.3354/meps10954

    Google Scholar 

  35. Miller MJ, Miwa T, Mochioka N, Watanabe S, Yamada Y, Fukuba T, Tsukamoto K (2014) Now you see me, now you don’t: observation of a squid hiding in its ink trail. Mar Biodiv. doi:10.1007/s12526-014-0249-9

    Google Scholar 

  36. Horie N, Utoh T, Mikawa N, Yamada Y, Okamura A, Tanaka S, Tsukamoto K (2008) Influence of artificial fertilization methods of the hormone treated Japanese eel Anguilla japonica upon the quality of eggs and larvae (comparison between stripping-insemination and spontaneous spawning methods). Nippon Suisan Gakkaishi 74:26–35 (in Japanese with English abstract)

    Article  Google Scholar 

  37. Nakabo T (2002) Nomeidae: driftfishes. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species, vol 2. Tokai Univ Press, Tokyo, pp 963–965

    Google Scholar 

  38. Jellyman D, Tsukamoto K (2005) Swimming depths of offshore migrating longfin eels Anguilla dieffenbachii. Mar Ecol Prog Ser 286:261–267

    Article  Google Scholar 

  39. Jellyman D, Tsukamoto K (2010) Vertical migrations may control maturation in migrating female Anguilla dieffenbachii. Mar Ecol Prog Ser 404:241–247

    Article  Google Scholar 

  40. Aarestrup K, Okland F, Hansen MM, Righton D, Gargan P, Castonguay M, Bernatchez L, Howey P, Sparholt H, Pedersen MI, McKinley RS (2009) Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325:1660

    Article  CAS  PubMed  Google Scholar 

  41. Manabe R, Aoyama J, Watanabe K, Kawai M, Miller MJ, Tsukamoto K (2011) First observations of the oceanic migration of the Japanese eel using pop-up archival transmitting tags. Mar Ecol Prog Ser 437:229–240

    Article  Google Scholar 

  42. Schabetsberger R, Økland F, Aarestrup K, Kalfatak D, Sichrowsky U, Tambets M, Dall’Olmo G, Kaiser R, Miller PI (2013) Oceanic migration behaviour of tropical Pacific eels from Vanuatu. Mar Ecol Prog Ser 75:177–190

    Article  Google Scholar 

  43. Dou SZ, Yamada Y, Okamura A, Shinoda A, Tanaka S, Tsukamoto K (2007) Observations on the spawning behavior of artificially matured Japanese eels Anguilla japonica in captivity. Aquaculture 26:117–129

    Article  Google Scholar 

  44. Okamura A, Yamada Y, Horie N, Utoh T, Mikawa N, Tanaka S, Tsukamoto K (2007) Effects of water temperature on early development of Japanese eel Anguilla japonica. Fish Sci 73:1241–1248

    CAS  Google Scholar 

  45. Castle PHJ (1970) Distribution, larval growth, and metamorphosis of the eel Derichthys serpentinus Gill, 1884 (Pisces, Derichthyidae). Copeia 1970:444–452

    Article  Google Scholar 

  46. Smith DG (1999) Derichthyidae. Longneck eels. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes: The living marine resources of the western central Pacific, vol 3. Stationery Office Books, Norwich, pp 1671–1672

    Google Scholar 

  47. Miller MJ, Tsukamoto K (2004) An introduction to leptocephali: biology and identification. In: Ocean Research Institute, the University of Tokyo, Chiba

  48. Erisman BE, Konotchick TH, Blum S (2009) Observations of spawning in the Leather Bass, Dermatolepis dermatolepis (Teleostei: Epinephelidae), at Cocos Island, Costa Rica. Environ Biol Fish 85:15–20

    Article  Google Scholar 

  49. Guidi L, Stemmann L, Legendre L, Picheral M, Prieur L, Gorsky G (2007) Vertical distribution of aggregates (>110 μm) and mesoscale activity in the northeastern Atlantic: effects on the deep vertical export of surface carbon. Limnol Oceanogr 52:7–18

    Article  Google Scholar 

  50. Cowen RK, Guigand CM (2008) In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol Oceanogr Meth 6:126–132

    Article  Google Scholar 

  51. Stemmann L, Hosia A, Youngbluth MJ, Søiland H, Picheral M, Gorsky G (2008) Vertical distribution (0–1000 m) of macrozooplankton, estimated using the Underwater Video Profiler, in different hydrographic regimes along the northern portion of the Mid-Atlantic Ridge. Deep Sea Res II 55:94–105

    Article  Google Scholar 

  52. Kubodera T, Mori K (2005) First-ever observations of a live giant squid in the wild. Proc Roy Soc Lond B Biol Sci 272:2583–2586

    Article  Google Scholar 

  53. Kubodera T, Koyama Y, Mori K (2007) Observations of wild hunting behaviour and bioluminescence of a large deep-sea, eight-armed squid, Taningia danae. Proc Roy Soc Lond B Biol Sci 274:1029–1034

    Article  Google Scholar 

  54. Heagney EC, Lynch TP, Babcock RC, Suthers IM (2007) Pelagic fish assemblages assessed using mid-water baited video: standardising fish counts using bait plume size. Mar Ecol Prog Ser 350:255–266

    Article  Google Scholar 

  55. Santana-Garcon J, Newman SJ, Harvey ES (2014) Development and validation of a mid-water baited stereo-video technique for investigating pelagic fish assemblages. J Exp Mar Biol Ecol 452:82–90

    Article  Google Scholar 

  56. Lowry M, Folpp H, Gregson M, Suthers I (2012) Comparison of baited remote underwater video (BRUV) and underwater visual census (UVC) for assessment of artificial reefs in estuaries. J Exp Mar Biol Ecol 416–417:243–253

    Article  Google Scholar 

  57. Taylor MD, Baker J, Suthers IM (2013) Tidal currents, sampling effort and baited remote underwater video (BRUV) surveys: are we drawing the right conclusions? Fish Res 140:96–104

    Article  Google Scholar 

  58. Wraith J, Lynch T, Minchinton TE, Broad A, Davis AR (2013) Bait type affects fish assemblages and feeding guilds observed at baited remote underwater video stations. Mar Ecol Prog Ser 477:189–199

    Article  Google Scholar 

  59. Jamieson AJ, Bailey DM, Wagner HJ, Bagley PM, Priede IG (2005) Behavioural responses to structures on the seafloor by the deep-sea fish Coryphaenoides armatus: implications for the use of baited landers. Deep Sea Res I 53:1157–1166

    Article  Google Scholar 

  60. Widder EA, Robison BH, Reisenbichler KR, Haddock SHD (2005) Using red light for in situ observations of deep-sea fishes. Deep Sea Res I 52:2077–2085

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank the ROV Hyper-Dolphin operation team and the captain and crew of the R/V Natsushima for their excellent effort and support during the intensive activities to deploy and retrieve the Una-Cam systems. We also especially thank the IRAGO Institute for providing the artificially matured Japanese eels for this study, and the R/V Kaiyo Maru for providing their oceanographic data during the survey. In addition, we greatly appreciate the support of the JAMSTEC cruise administration team who helped make this cruise possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiro Fukuba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuba, T., Miwa, T., Watanabe, S. et al. A new drifting underwater camera system for observing spawning Japanese eels in the epipelagic zone along the West Mariana Ridge. Fish Sci 81, 235–246 (2015). https://doi.org/10.1007/s12562-014-0837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-014-0837-4

Keywords

Navigation