Skip to main content
Log in

A toxicity bioassay study concerning the effect of un-ionized ammonia on the mucus cells response originating from the gills of zebrafish Danio rerio

  • Original Article
  • Environment
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Ammonia is one of the most common and pervasive pollutants in the aquatic habitat affecting the health of aquatic animals. It affects the number and morphology of mucus producing cells, resulting in excessive and irregular secretion and alterations in quantity of mucus, which can lead to complications in fish health. A toxicity test on the mucus cells localized on the gills (primary lamellae) and inner operculum epithelial lining of zebrafish Danio rerio at different periods of exposure (24, 48 and 72 h) followed by recovery periods was studied using histopathology, scanning electron microscopy and anterior gradient 2 homologue (agr2) gene expression techniques. Fish samples subjected to low, medium and high external toxic ammonia concentrations (L: 17.21 mg/l, M: 25.81 mg/l and H: 38.91 mg/l NH3-N) were observed to display a higher mucus layer production and active secretion compared with the control. Gill cellular alterations were more severe at 48 and 72 h. A high expression of agr2 was detected at 48 h (L and M) recovery periods and a (H) exposure and recovery period indicating an increase in quantity in newly proliferated alcian blue stained mucus cells and excessive secretion observed by histopathology. Such expression decreased at 72 h resulting in a decrease in mucus cell density and secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. USEPA (1999) Update of Ambient Water Quality Criteria for Ammonia—Supersedes Version—2009 update. EPA-822-D-09-001. US Environmental Protection Agency, Washington, DC

  2. Abbas HH (2006) Acute toxicity of ammonia to common carp fingerlings (Cyprinus carpio) at different pH level. Pak J Biol Sci 9(12):2215–2221

    Article  Google Scholar 

  3. Miron DS, Moraes B, Becker AG, Crestani M, Spanevello R, Loro VL, Baldissrotto B (2008) Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 277:192–196

    Article  CAS  Google Scholar 

  4. Spencer P, Pollock R, Dube M (2008) Effects of un-ionized ammonia on histological, endocrine and whole organism endpoint in slimy sculpin (Cottus cognatus). Aquat Toxicol 90:300–309

    Article  PubMed  CAS  Google Scholar 

  5. Kossakowski MK, Ostaszewska T (2003) Histopathological changes in juvenile carp Cyprinus carpio L. continuously exposed to high nitrite levels from hatching. Arc Pol Fish, vol 11, Fasc 1:57–67

    Google Scholar 

  6. Benli AC, Koksal G (2003) The acute toxicity of ammonia on tilapia (Oreochromis niloticus L.) larvae and fingerlings. Turk J Vet Anim Sci 29:339–344

    Google Scholar 

  7. Subramanian S, MacKinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B 148:256–263

    Article  PubMed  Google Scholar 

  8. Cinar K, Senol N, Ozen MR (2008) Histochemical characterization of glycoproteins in the gills of the carp (Cyprinus carpio). Ankara Univ Vet Fak Derg 55:61–64

    Google Scholar 

  9. Tort L, Balasch JC, Mackenzie S (2003) Fish immune system. A crossroads between innate and adaptive responses. Immunologia 22(3):277–286

    Google Scholar 

  10. Chen YH, Lu YF, Ko TY, Tsai MY, Lin CY, Lin CC, Hwang SP (2009) Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Dev Dyn 238:1021–1032

    Article  PubMed  CAS  Google Scholar 

  11. Hill AJ, Teraoka H, Heideman W, Perterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19

    Article  PubMed  CAS  Google Scholar 

  12. OECD 203 (1992) OECD guideline for testing chemicals. Test No. 203: Acute Fish Test

  13. Lease HM, Hansen JA, Bergman HL, Meyer JS (2003) Structural changes in gills of Lost River suckers exposed to elevated pH ammonia concentrations. Comp Biochem Physiol C 134:491–500

    Google Scholar 

  14. Sabaliauskas NA, Foutz CA, Mest JR, Badgeon LR, Sidor AT, Gershenson JA, Joshi SB, Cheng KC (2006) High-throughput zebrafish histology. Methods 39:246–254

    Article  PubMed  CAS  Google Scholar 

  15. Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34

    Article  Google Scholar 

  16. Shih LJ, Lu YF, Chen YH, Lin CC, Chen JA, Hwang SP (2007) Chraracterization of the agr2 gene, a homologue of X. laevis anterior gradient 2 from the zebrafish Danio rerio. Gene Expr Patterns 7:452–460

    Article  PubMed  CAS  Google Scholar 

  17. Hawkes JW (1974) The structure of fish skin—general organization. Cell Tissue Res 149:147–158

    Article  PubMed  CAS  Google Scholar 

  18. Guillen JL, Endo M, Turnbull JF, Kawatsu H, Richards RH, Aoki T (1994) Skin responses and mortalities in the larvae of Japanese croaker exposed to ammonia. Fish Sci 60(5):547–550

    CAS  Google Scholar 

  19. Smart G (1975) The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdeni). J Fish Biol 8:471–475

    Article  Google Scholar 

  20. Sive H, Bradley L (1996) A sticky problem; the Xenopus cement gland as a paradigm for anteroposterior patterning. Dev Dyn 205(3):265–280

    Article  PubMed  CAS  Google Scholar 

  21. Zhang JS, Gong A, Cheville JC, Smith DI, Young CY (2005) AGR2 an androgen-inducible secretory protein overexpressed in prostate cancer. Genes Chromosomes Cancer 43(3):249–259

    Article  PubMed  CAS  Google Scholar 

  22. Xia JH, Jiang J, Shi YH, Gui JF (2009) Predominant expression and cellular distribution of fish Agr2 in renal collection system. Comp Biochem Physiol B 152(4):397–404

    Article  PubMed  Google Scholar 

  23. Paul VI, Banerjee TK (1977) Histopathological changes induced by ambient ammonia (ammonium sulphate) on the opercular linings of the catfish Heteropneustes fossilis. Dis Aquat Org 28:151–161

    Article  Google Scholar 

  24. Bols NC, Brubacher JL, Ganassin RC, Lee LE (2001) Ecotoxicology and innate immunity in fish. Dev Comp Immunol 25:853–873

    Article  PubMed  CAS  Google Scholar 

  25. Randall DJ, Tsui TK (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Katagiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Zaidan, A.S., Endo, M., Maita, M. et al. A toxicity bioassay study concerning the effect of un-ionized ammonia on the mucus cells response originating from the gills of zebrafish Danio rerio . Fish Sci 79, 129–142 (2013). https://doi.org/10.1007/s12562-012-0573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-012-0573-6

Keywords

Navigation