Skip to main content
Log in

Antifouling steroids isolated from red alga epiphyte filamentous bacterium Leucothrix mucor

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Active antifouling steroids were isolated from the filamentous bacterium Leucothrix mucor. Bioactivity-guided isolation by silica gel column chromatography and high-performance liquid chromatography generated two compounds. The chemical constituents having the antifouling activities were identified as 17-(1,2-dihydroxyl-5-methyl-hexane)-2,3-dihydroxyl-cholest-4-en-6-one [compound (a)] and 13-acetate-17-(1,5-dimethylhexane)-cholest-7-en-3,5,6,15-tetraol [compound (b)] by interpreting one- and two-dimensional nuclear magnetic resonance and mass spectroscopy data. The two compounds were isolated from 780 mg of crude extract, yielding 12 and 14 mg, respectively. Antifouling activities were determined against a representative soft fouling macroalgae (Ulva pertusa), a biofouling diatom (Navicula annexa), and the bacteria Pseudomonas aeruginosa KNP-3 and Alteromonas sp. KNS-8. The two compounds were able to inhibit the spore settlement of Ulva pertusa zoospores with a low half maximal effective concentration (EC50) (1.2–2.1 μg/ml) and inhibit diatom growth with an EC50 of 5.2–7.5 μg/ml. Compound (a) showed activity with minimum inhibitory concentration values of 32–56 μg/ml and compound (b) showed an activity of 66–90 μg/ml. Among the two compounds, compound (a) is a new compound, whereas compound (b) was previously reported to have been isolated from a marine invertebrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Voulvoulis N, Scrimshaw MD, Lester JN (2000) Occurrence of four biocides utilised in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar Poll Bull 40:938–946

    Article  CAS  Google Scholar 

  2. Cresswell T, Richards JP, Glegg GA, Readman JW (2006) The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters. Mar Poll Bull 52:1169–1175

    Article  CAS  Google Scholar 

  3. Yamada H (2007) Behaviour, occurrence, and aquatic toxicity of new antifouling biocides and preliminary assessment of risk to aquatic ecosystems. Bull Fish Res Agen 21:31–45

    CAS  Google Scholar 

  4. Gough MA, Fothergill J, Hendrie JD (1994) A survey of Southern Engeland coastal waters for s-triazine antifouling compound Irgarol 1051. Mar Pollut Bull 28:613–620

    Article  CAS  Google Scholar 

  5. Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248

    Article  PubMed  CAS  Google Scholar 

  6. Scarlett A, Donkin ME, Fileman TW, Donkin P (1997) Occurrence of the marine antifouling agent irgarol 1051 within the Plymouth Sound locality: Implications for the green macroalga Enteromorpha intestinalis. Mar Pollut Bull 34:645–651

    Article  CAS  Google Scholar 

  7. Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: input, occurrence and environmental fate. Sci Total Environ 293:117–127

    Article  PubMed  CAS  Google Scholar 

  8. Sakkas VA, Konstantinou IK, Lambropoulou DA, Albanis TA (2002) Survey for the occurrenceof antifouling paint booster biocides in the aquatic environment of Greece. Environ Sci Pollut Res Int 9:327–332

    Article  PubMed  CAS  Google Scholar 

  9. Martinez K, Ferrer I, Barcelo D (2000) Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid extraction followed by high-performance liquid chromatography-atmospheric press chemical ionization mass spectrometry. J Chromatogr A 879:27–37

    Article  PubMed  CAS  Google Scholar 

  10. Fernández-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456:303–312

    Article  Google Scholar 

  11. Harold R, Stanier RY (1955) The genera Leucothrix and Thiothrix. Bacteriol Rev 19:49–58

    PubMed  CAS  Google Scholar 

  12. Brock TD (1966) The habitat of Leucothrix mucor, a widespread marine organism. Limnol Oceanogr 11:303–307

    Article  Google Scholar 

  13. Park SW, Lee JH, Park SW (2009) Disease of seaweed. Bioscience, Seoul

    Google Scholar 

  14. Silva-Acia F, Riquelme C (2008) Inhibition of attachment of some fouling diatoms and settlement of Ulva lactuca zoospores by film-forming bacterium and their extracellular products isolated from biofouled substrata in Northern Chile. Electron J Biotechnol 11:1–11

    Google Scholar 

  15. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Continental Shelf Res 20:1257–1273

    Article  Google Scholar 

  16. Wieczorek SK, Todd CD (1998) Inhibition and facilitation of the settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12:81–93

    Article  Google Scholar 

  17. Railkin AI (2004) Marine biofouling: colonization processes and defenses. CRC Press, Boca Raton

    Google Scholar 

  18. Cho JY, Kwon EH, Choi JS, Hong SY, Shin HW, Hong YK (2001) Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. J Appl Phycol 13:115–117

    Google Scholar 

  19. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  20. Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to nontoxic antifouling. J Invert Reprod Dev 22:67–76

    Article  CAS  Google Scholar 

  21. Yoshikawa K, Kanekuni S, Hanahusa M, Arihara S, Ohta T (2000) Polyhydroxylated sterols from the octocoral Dendronephthya gigantea. J Nat Prod 63:670–672

    Article  PubMed  CAS  Google Scholar 

  22. Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28:400–410

    Article  PubMed  CAS  Google Scholar 

  23. Baze A, Silkina A, Douzenel P, Fay F, Kervarec N, Morin D, Berge JP, Bourgougnon N (2009) Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J Appl Phycol 21:395–403

    Article  Google Scholar 

  24. Bhattarai HD, Ganti VS, Paudel B, Lee HK, Hong K, Shin HW (2007) Isolation of antifouling compounds from the marine bacterium, Shewanella oneidensis SCH0402. World J Microbiol Biotechnol 23:243–249

    Article  CAS  Google Scholar 

  25. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    Article  PubMed  CAS  Google Scholar 

  26. Tsoukatou M, Marechal JP, Hellio C, Novakovic I, Tufegdzic S, Sladic D, Gasic MJ, Clare AS, Vagias C, Roussis V (2007) Evaluation of the activity of the sponge metabolites avarol and avarone and their synthetic derivatives against fouling micro- and macroorganisms. Molecules 12:1022–1034

    Article  PubMed  CAS  Google Scholar 

  27. Tsukamoto S, Kato H, Hirota H, Fusetani N (1996) Mauraitiamine, a new antifouling oroidin dimer from the marine sponge Agelas mauritiana. J Nat Prod 59:501–503

    Article  CAS  Google Scholar 

  28. Mol VPL, Raveendran TV, Parameswaran PS (2009) Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int Biodeterior Biodegrad ScienceDirect 63:67–72

    Article  CAS  Google Scholar 

  29. Qiu Y, Deng ZW, Xu M, Li Q, Lin WH (2008) New a-nor steroids and their antifouling activity from the Chinese marine sponge Acanthella cavernosa. Steroids 73:1500–1504

    Article  PubMed  CAS  Google Scholar 

  30. Qi SH, Miao L, Gao CH, Xu Y, Zhang S, Qian PY (2010) New steroids and a new alkaloid from the gorgonian Isis minorbrachyblasta: structures, cytotoxicity, and antilarval activity. Helv Chim Acta 93:511–516

    Article  CAS  Google Scholar 

  31. Fukuzawa A, Kumagai Y, Masamune T, Furusaki A, Katayama C, Matsumoto T (1981) Acetyl-pinnasterol and pinnasterol, ecdysone-like metabolites, from the marine red alga Laurencia pinnata Yamada. Tetrafedron Lett 22:4085–4086

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Soonchunhyang University Research Fund (No. 20080154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Young Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J.Y. Antifouling steroids isolated from red alga epiphyte filamentous bacterium Leucothrix mucor . Fish Sci 78, 683–689 (2012). https://doi.org/10.1007/s12562-012-0490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-012-0490-8

Keywords

Navigation