Skip to main content
Log in

Effects of LED light spectra on the growth of the yellowtail clownfish Amphiprion clarkii

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Growth hormone (GH) is an essential polypeptide required for the normal growth and development of vertebrates. We have studied the effects of light-emitting diodes (LEDs) emitting different spectra (red, green, and blue) on the GH of yellowtail clownfish Amphiprion clarkii. Full-length GH cDNA from the pituitary of the yellowtail clownfish was first cloned and then the expression of GH mRNA under different light spectra was measured. GH mRNA expression was significantly higher under green and blue light than under red light spectra. These results indicate that in yellowtail clownfish, short-wavelength LED enhances growth more than long-wavelength LED, and that LED lights are more effective for enhancing growth than white fluorescent bulbs. Injection of melatonin resulted in significantly higher expression levels of GH mRNA compared to the control. We therefore conclude that green and blue light enhance GH levels and that melatonin plays a role in modulating growth of the yellowtail clownfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pierce LX, Noche RR, Ponomareva O, Chang C, Liang JO (2008) Novel function for period 3 and exo-rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ. Brain Res 1223:11–24

    Article  PubMed  CAS  Google Scholar 

  2. Barahona-Fernandes MH (1979) Some effects of light intensity and photoperiod on the sea bass larvae (Dicentrarchus labrax) reared at the Centre Oceanologique de Bretagne. Aquaculture 17:311–321

    Article  Google Scholar 

  3. Tandler A, Helps S (1985) The effects of photoperiod and water exchange on growth and survival of gilthead sea bream (Sparus aurata, Linnaeus; Sparidae) from hatching to metamorphosis in mass rearing systems. Aquaculture 48:71–82

    Article  Google Scholar 

  4. MacKenzie DS, Vanputte CM, Leiner KA (1998) Nutrient regulation of endocrine function in fish. Aquaculture 161:3–25

    Article  CAS  Google Scholar 

  5. Underwood H (1989) The pineal and melatonin: regulators of circadian function in lower vertebrates. Experientia 45:914–922

    Article  CAS  Google Scholar 

  6. Zachmann A, Falcón J, Knijff SCM (1992) Effects of photoperiod and temperature on rhythmic melatonin secretion from the pineal organ of the white sucker (Catostomus commersoni) in vitro. Gen Comp Endocrinol 86:26–33

    Article  PubMed  CAS  Google Scholar 

  7. de Vlaming VD (1980) Effects of pinealectomy and melatonin treatment on growth in the goldfish, Carassius auratus. Gen Comp Endocrinol 40:245–250

    Article  PubMed  Google Scholar 

  8. Porter MJR, Duncan NJ, Mitchell D, Bromage NR (1998) The use of cage lighting to reduce plasma melatonin in Atlantic salmon (Salmo salar) and its effects on the inhibition of grilsing. Aquaculture 176:237–244

    Article  Google Scholar 

  9. Canosa LF, Chang JP, Peter RE (2007) Neuroendocrine control of growth hormone in fish. Gen Comp Endocrinol 151:1–26

    Article  PubMed  CAS  Google Scholar 

  10. Chen TT, Marsh A, Shamblott M, Chan KM, Tang YL, Cheng CM, Yang BY (1994) Structure and evolution of fish growth hormone and insulin-like growth factors genes. In: Sherwood NM, Hew CL (eds) Molecular endocrinology of fish, fish physiology. Academic Press, Bethesda, pp 179–209

  11. Zeman M, Výboh P, Juráni M, Lamošová D, Koštál B, Bilčík B, Blažíček p, Jurániová E (1993) Effects of exogenous melatonin on some endocrine, behavioral and metabolic parameters in Japanese quail Coturnix coturnix japonica. Comp Biochem Physiol 105A:323–328

    Article  CAS  Google Scholar 

  12. John TM, Viswanathan M, George JC, Scanes CG (1990) Influence of chronic melatonin implantation on circulating levels of catecholamines, growth hormone, thyroid hormones, glucose, and free fatty acids in the pigeon. Gen Comp Endocrinol 79:226–232

    Article  PubMed  CAS  Google Scholar 

  13. Bromage N, Porter M, Randall C (2001) The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197:63–98

    Article  CAS  Google Scholar 

  14. Ullmann JFP, Gallagher T, Hart NS, Barnes AC, Smullen RP, Collin SP, Temple SE (2011) Tank color increases growth, and alters color preference and spectral sensitivity, in barramundi (Lates calcarifer). Aquaculture 322–323:235–240

    Article  Google Scholar 

  15. Downing G (2002) Impact of spectral composition on larval haddock, Melanogrammus aeglefinus L., growth and survival. Aquacult Int 33:251–259

    Article  Google Scholar 

  16. Radenko VN, Alimov IA (1991) Importance of temperature and light to growth and survival of larval silver carp, Hypophthalmichthys molitrix. Vopr Ikhtiol 31:655–663

    Google Scholar 

  17. Ruchin AB, Vechkanov VS, Kuznetsov VA (2002) Growth and feeding intensity of young carp Cyprinus carpio under different constant and variable monochromatic illuminations. J Ichthyol 42:191–199

    Google Scholar 

  18. Migaud H, Cowan M, Taylor J, Ferguson HW (2007) The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar. Aquaculture 270:390–404

    Article  CAS  Google Scholar 

  19. Villamizar N, García-Alcazar A, Sánchez-Vázquez FJ (2009) Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture 292:80–86

    Article  Google Scholar 

  20. Lythgoe JN, Muntz WRA, Partridge JC, Shand J, Williams DM (1994) The ecology of visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. J Comp Physiol 174A:461–467

    Google Scholar 

  21. Myrberg AA Jr, Fuiman LA (2002) The sensory world of coral reef fishes. In: Sale PF (ed) Coral reef fishes. Academic Press, San Diego, pp 123–148

    Chapter  Google Scholar 

  22. Yamanome T, Mizusawa K, Hasegawa E, Takahashi A (2009) Green light stimulates somatic growth in the barfin flounder, Verasper moseri. J Exp Zool 311A:73–79

    Article  Google Scholar 

  23. Volpato GL, Barreto RE (2001) Environmental blue light prevents stress in the fish Nile tilapia. Braz J Med Biol Res 34:1041–1045

    Article  PubMed  CAS  Google Scholar 

  24. Shin HS, Lee JH, Choi CY (2011) Effects of LED light spectra on oxidative stress and the protective role of melatonin in relation to the daily rhythm of the yellowtail clownfish, Amphiprion clarkii. Comp Biochem Physiol 160A:221–228

    Google Scholar 

  25. Boeuf G, Le Bail PY (1999) Does light have an influence on fish growth? Aquaculture 177:129–152

    Article  Google Scholar 

  26. Blanco-Vives B, Villamizar N, Ramos J, Bayarri MJ, Chereguini O, Sánchez-Vázquez FJ (2010) Effect of daily thermo- and photo-cycles of different light spectrum on the development of Senegal sole (Solea senegalensis) larvae. Aquaculture 306:137–145

    Article  Google Scholar 

  27. Tissot BN, Best BA, Borneman EH, Bruckner AW, Cooper CH, D’Agnes H, Fitzgerald TP, Leland A, Lieberman S, Amos AM, Sumaila R, Telecky TM, McGilvray F, Plankis BJ, Rhyne AL, Roberts GG, Starkhouse B, Stevenson TC (2010) How U.S. ocean policy and market power can reform the coral reef wildlife trade. Mar Policy 34:1385–1388

    Article  Google Scholar 

  28. Li WS, Chen D, Wong AOL, Lin HR (2005) Molecular cloning, tissue distribution, and ontogeny of mRNA expression of growth hormone in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 144:78–89

    Article  PubMed  CAS  Google Scholar 

  29. Law MS, Cheng KW, Fung TK, Chan YH, Yu KL, Chan KM (1996) Isolation and characterization of two distinct growth hormone cDNAs from the goldfish, Carassius auratus. Arch Biochem Biophys 330:19–23

    Article  PubMed  CAS  Google Scholar 

  30. Vriend J, Lauber JK (1973) Effects of light intensity, wavelength and quanta on gonads and spleen of the deer mouse. Nature 244:37–38

    Article  PubMed  CAS  Google Scholar 

  31. Ruchin AB (2004) The effect of light regime on feeding intensity and growth rate in fishes (in Russian). Hydrobiologichesky Zhurn (Kiev) 40:48–52

    Google Scholar 

  32. Levin J, McNicol E (1982) Color vision in fishes. Sci Am 246:108–117

    Google Scholar 

  33. Ekstrom P, Meissl H (1997) The pineal organ of teleost fishes. Rev Fish Biol Fish 7:199–284

    Article  Google Scholar 

  34. Porter MJR, Randall CF, Bromage NR, Thorpe JE (1998) The role of melatonin and the pineal gland on development and smoltification of Atlantic salmon (Salmo salar) parr. Aquaculture 168:139–155

    Article  CAS  Google Scholar 

  35. Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M (2010) Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 165:469–482

    Article  PubMed  Google Scholar 

  36. Schreck CB (1993) Glucocorticoids: metabolism, growth and development. In: Schreibman MP, Scanes CG, Pang PKT (eds) The endocrinology of growth, development, and metabolism in vertebrates. Academic Press, San Diego, pp 367–392

  37. Falcón J (1999) Cellular circadian clocks in the pineal. Prog Neurobiol 8:121–162

    Article  Google Scholar 

  38. Bayarri MJ, Madrid JA, Sánchez-Vázquez FJ (2002) Influence of light intensity, spectrum and orientation on sea bass plasma and ocular melatonin. J Pineal Res 32:34–40

    Article  PubMed  CAS  Google Scholar 

  39. Iigo M, Abe T, Kambayashi S, Oikawa K, Masuda T, Mizusawa K, Kitamura S, Azuma T, Takagi Y, Aida K, Yanagisawa T (2007) Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen Comp Endocrinol 154:91–97

    Article  PubMed  CAS  Google Scholar 

  40. Falcón J, Besseau L, Fazzari D, Attia J, Gaildrat P, Beauchaud M, Boeuf G (2003) Melatonin modulates secretion of growth hormone and prolactin by trout pituitary glands and cells in culture. Endocrinology 144:4648–4658

    Article  PubMed  Google Scholar 

  41. Schlenk D, Rice CD (1998) Effects of zinc and cadmium treatment on hydrogen peroxide mortality and expression of glutathione and metallothionein in a teleost hepatoma cell line. Aquat Toxicol 43:121–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Technology Development Program for Fisheries, Ministry for Food, Agriculture, Forestry and Fisheries, Korea, and by the MKE, under the ITRC support program supervised by the NIPA (2012-C1090-1221-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Young Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, H.S., Lee, J. & Choi, C.Y. Effects of LED light spectra on the growth of the yellowtail clownfish Amphiprion clarkii . Fish Sci 78, 549–556 (2012). https://doi.org/10.1007/s12562-012-0482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-012-0482-8

Keywords

Navigation